“Fatigue Life cycle Analysis on Steering Knuckle Ball t”
GUIDE Mr.A.R.SURESH M.E Assistant professor (ss) Dr.MCET
S.PRADEEP ME(CAD/CAM) Dr.MECT-POLLACHI
OBJECTIVE OF THE PROJECT
Optimized design of a Steering Knuckle
Ball t with increased life condition.
Introduction to Ball t • The Ball t has three rotational DOFs. • This t is used to connect the knuckle to the steering rod and the short and long arm. • Ball ts – allows movement of steering components and suspension • Ball ts are a critical component to a car. • They are the part of the vehicle's chassis that connect the steering knuckles to the control arms next to the wheels.
Broken specimen of a ball t
Specimen preliminary investigations • From the broken samples it is found that maximum failure occurs at the neck region of the ball t. • Fractured parts are investigated for surface defects through SEM analysis, and results are collected.
Chemical Composition of SAE 4135 grade steel Elements
Symbol
Unit
Specified Values
Observed Values
Carbon
C
%
0.33-0.38
0.334
Silicon
Si
%
0.15-0.35
0.229
Manganese
Mn
%
0.70-0.90
0.774
Phosphorus
P
%
0.035 Max
0.013
Sulphur
S
%
0.040 Max
0.004
Chromium
Cr
%
0.80-1.10
1.06
Molybdenum
Mo
%
0.15-0.25
0.184
Mechanical Properties of SAE 4135 Grade Steel Mechanical Properties Properties
SAE4135
Diameter (d) mm
>16-40
Thickness (t) mm
8
<20
0.2℅ Proof stress (N/mm2)
min.650
Tensile Strength (Mpa)
900-1200
Fracture Elongation (℅)
min.15
Reduction of area Z (℅)
min.50
Notch Impact Energy ISO - V [J]
min.40
Density (×1000 kg/m3)
7.7-8.03
Poisson's Ratio
0.27-0.30
Elastic Modulus (Gpa)
190-210
Yield Strength (Mpa)
1034
SEM Analysis
a) Origin of the crack
b) Fracture features of origin
SEM - Result There is enough evidence of micro crack on the surface of
the neck region just below ball. The broken samples show that the crack originate from the
top surface as it experience a uni-directional knocking load.
EXPERIMENTAL DETAILS Fatigue test under cyclic loading
INSTRON servo-hydraulic actuator of 25 KN capacity
Constant amplitude cyclic loading with load ratio of 0.3
The test frequency was 0.5 – 5 Hz
Fatigue test on steering knuckle ball t
EXPERIMENTAL DETAILS
(Contd…)
Constant amplitude completely reversed fatigue test results At midlife (N50%) Specimen ID
Test control mode
Load (KN)
Test control No.of.cycles
Freq (±5)
HZ
Δε/2, %
Δεp/2 [a]
Nf
%(calculated),
Failure Loaction
[b]
E Gpa
Ball10-1
strain
4
5
0.56
0.55
2.514E+05
NECK
190
Ball10-2
strain
4
5
0.79
0.78
2.544E+05
NECK
190
Ball10-3
strain
4
5
0.625
0.62
2.471E+05
NECK
190
Ball10-4
strain
4
5
0.6
0.6
2.504E+05
NECK
190
Ball10-5
strain
4
5
0.605
0.605
2.533E+05
NECK
190
[a] Δεp/2(calculated)=Δε/2-Δσ/2E. [b]Neck region NECK
CASE – I : Ball t (30°,R1.5,L-54mm)
Boundary and Loading Condition
Total Deformation
Stress distribution
Life cycle
CASE – II : Ball t (33°,R3,L-64mm)
Boundary and Loading Condition
Stress distribution
Log-Life cycle repeated Total Deformation
EXPERIMENTAL DETAILS
Existing neck region Von-Mises Stress (Mpa)
Total deformation (mm)
Angle
(Contd…)
Modified neck region ε-N
S-N
Min
Max
Min
Max
30
0
918.63
0
0.01065
18553
1.87E+05
2.91E+05
0.3
31
0
611.87
0
0.064
35114
3.65E+06
3.89E+06
0.3
32
0.0003
621.87
0
0.0644
33233
3.24E+06
3.47E+06
0.3
33
7.55E-05
599.37
0
0.0683
37876
4.22E+06
4.46E+06
0.3
35
0.00013
609.41
0
0.069
35635
3.68E+06
3.92E+06
0.3
36
0.0002
604.26
0
0.0694
36763
3.94E+06
4.18E+06
0.3
37
0.00015
608.39
0
0.0694
35855
3.73E+06
3.97E+06
0.3
38
0.00015
865.2
0
0.106
10326
2.28E+05
3.21E+05
0.3
Fatigue Strength factor -1
Type – Full Reversed
Marrow- Fatigue life
SWT Fatigue life
Ratio
Fatigue Life (Gerber)
Case study 1- Experimental Results Vs Software result Life Specimen ID Experimental
Software Result
Ball 1-1
2.514E+05
4.222E+06
Ball 1-2
2.544E+05
Ball 1-3
2.471E+05
Ball 1-4
2.504E+05
Ball 1-5
2.533E+05
4.222E+06
4.222E+06 4.222E+06 4.222E+06
S-N Curve
Results of design for Infinite number of cycles Design for Infinite number of cycles Existing Design Parameter Min Max 7.55E-05 599.37 Von mises stress 0 0.0683 Total deformation 0 0.93 Stress ratio 0.071 14 Safety margin 0.933 15 Stress safety factor 37876 1.00E+06 Life cycle (cycle) Equivalent Alternating stress 2.26E-05 179.81 S-N Life (Gerber) (Mpa) Safety factor 4.79E-01 15 Bi-axiality Indication -1 0.9879 Fatigue Sensitivity 9.17E+03 7.85E+05 4.21E+06 1.00E+12 Life cycle (cycle) 1.00E-03 2.37E+02 Damage ε-N - Life (Marrow ) Safety factor 5.34E-01 15 Bi-axiality Indication -1 0.9879 Fatigue Sensitivity 2.15E+05 1.83E+09 4.46E+06 1.00E+09 Life cycle (cycle) 1.00E+00 2.24E+02 Damage ε-N – Life (SWT ) Safety factor 5.34E-01 15 Bi-axiality Indication -1 0.9879 Fatigue Sensitivity 2.51E+05 1.00E+09
Improved Design Min Max 7.41E-10 380.78 0 0.043 2.18E-12 1.5231 -0.343 14 0.656 15 1.98E+05 1.00E+06 2.23E-10
114.23
0.7546 -1 4.52E+04 2.06E+08 1.00E-03 0.84 -1 6.24E+06 2.06E+08 1.00E-03 0.84 -1 6.53E+06
15 0.978 1.00E+06 1.00E+12 4.81E+00 15 0.978 1.24E+11 1.00E+12 4.84E+00 15 0.978 1.24E+11
Results from analysis • A maximum load of 4000 N applied perpendicular to the
axis of the of the ball t . • Maximum deformation of 0.010 mm occur at Edge of the surface. • Maximum stress of 380.3Mpa ( Von Mises )is found out in the necked region. • When the parameter viz. Radius, angle, length and diameter increase the fatigue life is increased.
Conclusion • The software results which were obtained for fatigue life
predictions reasonably good agreement with the experimental results. • The increase in the taper angle (ø) the radius ® but, the life is decrease first and then increase for the increase in the taper angle. • For the given tapper angle and radius increase in the length (L) increase the life of the component. • With the limits of the parameters considered the tapper angle 33° radius 3mm and the length 64mm gives the better life.
Future Works • The
same design study can be utilized for other composition of materials. • This design study can be tried for the variable load application also. • This design study can be tried for fracture surface on bending and torsion loading.
Thank You