This document was ed by and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this report form. Report 3b7i
< I m. Mark thesca!e ror E, ondp.
Ftgur. P.i . 22
"OItath:: Fields \lith n:spect 10
:falr-Oand
289
Pro blems
'.23 Modellhe dome of II Van tit: Grllarf )ltmerator as a conducting sphere. The dome is charged to hold the maximum amount of electric charge Q", before the ai r SU t · rounding the dome breaks down. Ulle the following data : radius or the dome - 0.11 m ,
with angular
I, Zland B ill at
)Iential '11 rJ at inity Plot o$(r) harge on the changed . You :tor is 8 solid tor has an In· hum between
; a net chargc 1m. The lIym·
I p.
breakdown E of air _ 3
II
10' VIm.
(8) Calculate the maximum Q", accumulated on the dome just before the breakdown . (h) Calculllt" th" 1IOlta~e of til" dome in reference to the potential at infinity just before breakdown occu rs. rcl When the dum" is c1l1irjoloo with the U1uxiUluUl charge Q",. a person uses a conduc ting rod to discharge the electricity. Assume that the discharge takes 0.01 seconds to complete, how IllronglllthA dlAChatging current Inn thl! avtlrage)?
CHAPTeR
J.:.L !"~A,r. (a.) ItAI, o.~ 0.1) •
,-" 1 .,¥ --t--"1 , I -
I
'.L. • -i-- --',
q
J.1."";:"iTltlq4 {[(w!.(#.,I+taDfj
jr_ u".,)'+(o.l)·T(D.II)'rl )
~.,'" ~
'J -I. s- ... ,l-iL
!
1 ---+-":--x i
v. f
-
r
,
PIX. ~ .11 < .t. [cx"Y'+ J'j(Z[C<'A)" ,'. J'r J (h ) f<,...,/O<JA,.)' k [[(I_>'+(IO<JIl/'J+-z[c qq",+{'O<J4.)'Ji 1 t
( o.,
-4;;1.. (O.""7/~)
('J S;'_<<. (xJ."1'·J 1 )Yz.)I>A,. I ((KPA.)1+ 1 1+ J'JYa_(1:'.. ~I+)')1i. F.- ("), if(x. , . J) (x'.,'+ J ']'C z[.··"+1 'Jf}
-Jr f
f(10c:>A1,CCA./O}-
~ll4.~·
i1. 'E- -1·':~"r~·'ttO·I<J'7TJ(/O' ~
-4;£I2.(II.CO'T01)
I
--:JrrX'+"+l')-r
XV("il.,4-.4- ~WI
.- 0«'," F
r
.
..
X~X
r
32
0"
0:1= I,m
I o-------"-1 . ", 8' '··~i ,, ,,
.
, "'",'"A,-_ o •.':..'___
I /1,10 (41)
f.
-I
Dol ~. cJ. o c 1.,,"( ~/tJ.I"') • 84.S-
e-· p'" (h)
~
=
f
PL %~t."
J
P-w. , ... ~~-'(i,/ZO.).Z,U· (.) g- p I:/,.{:,Ol,) 5,;'(1.8'-)- f40!\J1
-1.434
( bl
po ;"t
(f,.') ~
~., ir/ll.ili) IC~.::S "'IO~" c o. S'D' ~
F'",.. ;,,·h,...I.ly UIlJ 1.4",,,
(~) Ewor (ij
'" IIt) S .... ' , ......) . ltrl.(~.
cll .. ,..a£
'"
(C) .,,.,. ..
(tJ.o.I99)
L!JAfJ~X""'A~i.... , ii .. 11 r.p2~
r
-r
":'!;::fff)t/Ot'% • 0.% r-
/0,. ~~I E" 2 ({f-! : -;({) {;~ ~.O .f.r- a"'
P.a:1~ (10)
f,"" { !OII)I
_ ~
fL(o oS) r "4iii1I .
-/I
(a.) ~ itO
(h, (C)
£=Ol'orr
E ~()
D<Jr< (
~,.
\,
4frcb
f-r bfr
E-f 4n-i r c ,., r-."
,
9.1"
to,
Ixl(D. I~ lf~t(£).)_"ltl{_O.)~ ZTTJ.I(D.).Pv"J.t(I~) ,', p)CKfvx 4> E-f~x J """are (v·,O"
~, ')()tJ.1
1
'trA t (D.)·fv '1T1i1.(D.l)
Pv .., E·: -f;(tJ,/) I~t f.,.a,D4 ~ "<-D ,' , lnh'(-o.> - p. "~'(A') ,'. o~ ~ .. D.' p., .. i ... 9';;(tJ.I)~ ,.J,ut f" -1<"·
... 'tI,..
0./
33
~
...,
.,
'v· I
':/;
/O ••
•
.0.1
J, /
!/ ...
---~T-~~~----1 oj
'/.17
4Uicr) 0 0
---+-_0 Io
•
~~--f--+-----r
34
..
,: 0
•
<
r
35
10
332
..:lItc:l ric Furee and Enerl)"
This electrostatic adhesive surface is widely used in desk -top calculator-driven curve tracers. A typical voltage used to charge the embedded conductors is 300 volts. and typit:1I1 spacings between them are approxi· rrmtely 2 mm "
Problems 10. 1 A point charge of 4 cuulom bs is located at the uri)Cin (0.0,01, ami (I. !lecaml point cha rSA of lJ' cuulombs Is a t II , 0, OJ. A ~Ula ll test-charge il placed at 13. O. 0). and it is ruumJ 11'101 the 101111 force 011 Ihtl test charge ill ~uallu .:era. Find Q' in IfOrms of (j. 10. 2 Two irienticill small balls are altllcht:d 10 weightless IIITin!!!! 15 em long. Each hall carries 10 • C of c.harge, lind cach has a ma.'IS of I )! The), achieve an Aquilibrium state lIndp.r the influence of electrostatic force and gravilalinnai fun;t:. as shown In Figure PlO.2. Find the angle cr. Hint: n is small
10.3 Consider a long \intl·charge with fI1 - 1U -~ C/m . Find thl! fon:tl acting on 11 dust parllde carrying 10' C, I m away from the liM CharM!!. 10.4 A line charge wUh p, _ 10 6 C/m isl(lf:aled in tlil" ot )( - 1, Y - 0 A plane charge with P• .. 10 • e l m is located al x - O. A positive point chArge of 10 I C is at (1{z, 0, 0) in rt!chUlMulaf coordinates. WI,al is the 'olal force actinM on .his point charge? 10,5 Cha'"8e is uniformlydilii,ributed in the spherical volume r.$ 0 with p~ andp. - 0 forr ~' u.
-
2 x to 'C/m'
tal u~ Gauss· law 10 find E for r .:. n (b) Find Ihe fon;tl acting on .1 1 1'~t churgtl uf 10 I. C al r - 11/7.. (e) Is the force ob'aiMd in [hila be changed if 'he dntrgc distribution extendslu r20 instead of heinM limited to r ~., o? 10.1 In a .'IPOO sorting machlnp-, undesirable seens IIftl deposited with an tlh:ctrostalie r.hargt! while they p
1111(.1
0 R r.OT!IOn. E:1t.-cltomogM.tism ISan FnlllcitOO W. II. Freeman lind Co.
I [ner~y
• ca lcuhedded pproxl-
Problems
333 VlvQhsl
""
,
5
[milllsecondsl
At room temperature f:lU "CI and standllrd Atmosphere, whfll should be the S17.e of the cnrona wire if b - 3 cm. Vo - 10 kV. and the fOughM" factur uf the wire is equal to 0.8? (RefAr to Figure lOA..I What should the loweS! vollage on A Van de Grad! generator be in order to htiVA It product! corona on its surface? Assume that ,.;< _ 4 x 10" V1m and Ihlll the radius of thA melal sphere ill equal to O.H m. Refer 10 Figure 10.1. If Ihe voltag9 applied to the parallel plall!llsihe sawtooth signal IIhnwn in figure Plo.g. find the loclls of tht! electron on tlll~ fluorescent !K:reen located at x - 20cm .
for the cathode-roy luhe shown in f igure to.8. whlllllhnuid Ihe voltagM V~and V, be in order 10 make the electron beam trace 11 circular palh on the x:reen at 60 TflVnlulions per second ? AssulOt! Ihat the vcl1iclliand the horizon tal deflection plates are identic.a!. ~n Aleclron is IIcceleraTed by a difference In poten tial of 1 kV between Ihe anode and Ihe r.alhode. It e nlers the pnrallel -plate region with Ihls kinetic energy. Its velocity makes a 5" angle wilh thA plane of thtl fllu-allel plate lit thA entrance end, as shown in Figure P10.11.
j
tu r-
(a) Find V,. v..' und v"" al I _ O. (b) OLtain Iwo equati uns for the coordinatAII of Ihe eltlCtron (II. z) as [unclions of I. NOlc thut x - Oand z _ 0111 1_ O. (e) find the posil ion of the electron lit the exil end uf IhM parallel jJllltA.
oslatic r T he ·oltll.lje 10
- 3cm_1
the
be V, region Figure plille.
T-- F======~ ~ 10m -+-~"'"'
1
100 V
__ --,.,,.-_> -1.0'
L--F====~'V m._gll x 10 " kll q.- 1.60xl0 " e
,
......r. "10.11
10
334
E lectr ic force Bnti Energy
10. 12 Conyider the ink-jel printer shown in FigurA to.l0. Define q~
_ c:hargt! on the ink drop
/lid -
mass of the drop
V. _ deflection-plate voltage d - deflt:CIion-plale spacinH _ velocity of the ink drop al entry 10 the deflection plaIA 9dp - deflection-plale length ~ _ distance from the deflection-platA Antry 10 the print plant! v~
Show Ihl:lllile vertical dillpla!:flmeni of the Ink rlrop is Kiven by
L1~ V. RdpI [ "p - -'t1dp ) '. - --'mdUVoj 2 10. 1' Find the capacitance orlhe IIpherical capacitor 8hown in Figure 10.13 by HllinH (10.42J and (lO.50). Start from
Q £ ___, ' 4 ... u
for b > r > o
and show that your rellull agrees with (10 47).
10. 14 Find the cllp8citance of thA cylindrical capilc!lor shuwn in Figure 10.14 by using (lO.42) and (10.50). Shnl from
E -~ jJ for h :;:.p> u 2lffP
and show thai your result agre4!S with (10.49). 10. 15 Consider the parallel.plote capacl10r shown in Figure 10.12. What is the maximum capacitance on~ can obtain by Ilsingmica as the Insulalor1 L~t the area of the plate be 10 em' and the voltage rating of the capacitor be 2 kV, with 0 safety factor of 10 Use Table 10.1 for the value of ( for mica. 10. 10 Consider the cylindrical capacitor shown in figure 10.14. What is the maximum capacitance one can obta in by lIsingoil es the insulator? Tak~ 0 - 1 cm, h - 2 cm and the volta)!!! rating _ 2 kV, with a safety factornf 5. UlW Table 10. 1 for the value of t for oil. 10,17 A pmallel·plale capacitor Is filled with two dielectric: mB!t:!riais In a configurBtion shown in figure PIO.17. The lulal area ofthA plBte is A (a) Find the cBpacitance Gin lerms of A. d, f" Bnd (I ' (bl Suppose Ihal the poslllvA plale carries Q coulombs of charge. and find QI and Q1 in lerms of Q, whArA QI and Q, are charges un the left· and on the right.hand sides of the plate. respectively. Neglect fringing fields. 10. 18 Consider the capacitor shown in Figure PIO.17. Letl , - 3••. (, - 5fp. d - 0.6 mm. and A _ 20 cml. The potential between thA plat~ is 300 V. Find the 10lal slored eleclric energy In Ihis capacitor.
t{( E:Fn w12
wlZ
1
fora: Bnd Enerxy
Problems
335
10.1' Find the capacitanr::e per unil length of Ii c.;ultxla] capacitor with two layers of insulating materials. asshuwn in FigllTe 10 15c. ExpressCIl1 in tennsof n. h. c. ',. and
'"
10.20 Find the capacitance C of a parallel-plale capacitor witla two lavers of insulating materials. al'! .~hown in Figure P10.20. Expre.u C In tt>rms of .A {the orea of the plalel, d,. dz. 'I' and ( J.
13 hy using r 10.42J
10.21 Refer 10 the capacitor shown in Figure PlO.:W. Let (, - 3fo, f , _ 5(0' d, _ 0.3 mm. d l _ 0.3 mm. anu A - 20 r::m z. The vohage across the capacitor is 300 V. Finrlthe total stored eltXtric energy in this clll-lticHur. 10.22 Derive {lO.tI:ll.
ra HlI4 hy using
10.23 A pltrallel·plate capacitor ctll"l'ics ... Q un onR plaIA lind - Q on the other plate. The orca of ellch plale is 1\ and the separation between the platfll'l is S. The medium is
air. (0) Finu the tolal stnred energy UII; In this capaci tur ill lerms nfQ, 1\, Sand (0. (b) What is the c1cctrosllltic fUTCe acting nn the platos? Is it attructive or repulsive·'
Hint: finn the change in VB with fCSpt!t;1 tu S.
is the maximum "ea of the plate be factor of 10. Use 15 the maximum cm,h-2cmand . the value of f for
configuration C in s Q coulombs of uges on the lefting fields
1 II
clt~citam:e
d - 0.6 mm. and .:II stored electric
OI"PrEll. /0 If).!
,-11--.,,:--'-"-"- •
(C)
"o~ S'h(4! -tJ.c.
, "/ 1--,
.'"Du.,,", -/
~'~J 4."J.$« i.
l,..;I•• L co"J.d.i""~: "ifo). v.. tljtD) ..O; .",",; .. "." .. ViIt)-5t+V. .. X(1.)-
'tAL
r ......
_0$
c.<.t
l"- (Ill
%(11).1(d)-0
-ft1 .. v.+ ... t .... ~'t-f~·O ... t .·.p. .jii.1f 'f/v,".. zs¥-"- l'
"iJ v d" ~ IV 1 . ft 1\')2tr'Cfj'"':(-a-)"~~ "" ... ~~(")--2-7i7t -0 ~/J()=-aM4.1T
.!!!::!.
For- a
To pr"~ (!o'''''AJ Er-- ~ F, • 3~/P·*I (S + 3"'O"~) J wJ..er. "
•
I()" I j., (#41/_) 4L
IifSI ) • J_ ,I) " "0. £hc (U' '1i'J + 3 11.10'l 1fJ"J'""Z
.. J+ 8$$ .• ''<0.) +244.'" ( .. t.")"S.4~Z (Ii)'
7.'''(1&.£0 a.) cO
~ A _
().I' ""'''"
•
To protUl. uro,..... on ot.e r.A
~;-.= f
to
1 ..... /~e
, .t.
rc.!""'r",,
Ec - +"'0· ty..., ... V ~ AE,_O.'. f~lo
..
~ MID" V
)
ID. ,
,', z·· ~/ . 7' -D. ,S --3./4--
~(
•.,.) .. J1.: .... ,·.(1o·.)t-Ctl.'-)_ Z.#f9'-
,., 2,.. ... L7.",~.JS"=
"
T4-t. bCAlt. II"
,.,"Utt
~ ,,,,.,,,. I~
I 40 skiy.~
I*'t ..".
J • .1"'10 .fi- +~. I"""",",,, ~.14c [~/ItCL.6I"~.. Mu II-y &~i: -II,..,. ';0 pa~~ 'f~.Uj" v..c. po.r..llc./ ~ r~i.A.~ 'CA.; ~,. 6';""/ ~" s"L"f..L J,J ...r..t..:c ".~.] oUt
(-t.-::;:••llVd's) -11--+---136
jMYJ1>14,..
"
rl ~. VO C~S"" ~ VI -v. S/;..""t ~ g c: l!'~~ it,'':
bfJ. t.'~/"'wt
~(. tJ,.,.L iltL .Ju/.rw. ,;... v.~ ( I1J
..J..".,.v;'.,.V .. ,
x- -/!,VZ" t/_ 1~~ 4 c'OJwt ~ ~
..f.,..".. ... ciru.J.,..,.
PA.M
l4t'uht-. pJA.
""Ji~)
,,_/z£v. '"f
oMUt
'/1./.'-11.1""..,0
, .111110-11
-IJ.a
s~c.n,
d,.,., -«
MJht.rc..
.~ {AJ-llr.-.6t>-ll(.
_/S~" I/"''''''/.5 • lor ...
".'1'$
~,. ~(4) - 11; tIS~· _ 1.8~4)1I0 '-.1.9;7"'0" Itt/I tr4J"'· tr,l~) • - tJ;, 5/;" 5·. -1.&'741C10·. $J;" S · . -I. ~ l ' ",/0' "/,J (b)
EJlc-l"-~:'-"JD4 IV",; 1t(D)·~U~)·O _V.(~) d" c,,) 'I.E, . f F. IIIt~."E}I.. dt lYle
•
-.
./..Il.(t-J
7r _0
X{-t
)
c
• ml~. ~(
... ~(-t>~ 11;2. .,
Jll'1)
,!."t ... v,.M
7t ..... 2tt)-
·;' •• /(1-1',,(-10·) ~... , -1."!n(lO " of • Z"fI.lI~/D-)'
i! ("-) .,. 8. 71C10"-t
"
37
t1X(~
-t. i.
leF.
.~ "'Xtt).~t
~I!'t'
8 .• '. LJ'.'.'~ -'.~Z"O/<JJ.J_ """",,.. 0-11.
,
.. v.II -t
10 .16
E-. ,,,It'.
Frc,." 1A-b1l. IO./~ II.Si"S S~..r: f.,d.,. r, In -#!e ~£·l1&Ier CJ>.ftll..~'"J E ;'"dt/. uvywJ.arc.
F~ (d).ZS),j •
...
.
e,. ~(':;1iJ -Is-;J..........s-lrtl/t'uc ( . ) ... VII,
E--
r4ZIU/~S
V
.. ""'C't-.S -.
-r
c- }.11£Il/£.('/6.);
~ro,... lIt>.4Q).
,.,I£J
t
I",. "d b, ~oJ/U" rh...,. E -.-:'
i, .z (_A. i 1.1(11) I A V" A Z - - ""J,,].,O' • iT Cis I;,.,."tly prpp"ltP-L -hi '" ,,6/... ) . E /:cJJ... V
7'
•: Toobh.;n """"n"""~ C , 'tIC.",i-A"Mu.-'I ",.~~ ,Ji..{b/-.) _wort ~~ 1J1e.«',
:. C=
:II:
/0.17 Allum' V#~1.
V
A.Gr'05$
"'Q.d),"''''.(l.'''I,)..!L~ ...,..
4
:.C.&J/V-"Ti[(E,,*,(,)
Go ,/Q,-
(b) /0.18
£,/1"
I-
£,.6.- v/"
pt.:C4.1 H.tJt
Q,_c,E.-,A ,tPJ-t,EzA, ..
{et}
3.83rl,O-"P ,lJAut £-z.)£.
~
(J;,L ( r..II"ID.l) tIl
'III
t,~'
-:
~
""-L."", 4J,JQl-z;r,:
4A4 QrQ,"'Q, ...
I.Q
Q ..
" E,
. ..A
I
_
""/&
J. , ="4ci'" ' ( 1,#i,,)V t • f."ll/(flJl.m"IO ~O"IO'" I -. l. & U. --r-(V w.(3"~)w(.Jo~) .. S.3¥./O- jou/.
(0./9 t:f¥Nt"(IO.U), Fp=-rII.r f,v d
V-
V&(; ... V",
- - J/-'f:r~.p- I.e ~.rf'f'df -
.tt, ~,y..
)+
.,.,.,.
tCf
.~~.£..(o/c)
,', c· f· (f,h) /[.fk;j.o('/~.'fh,p,.(b/&)}& -i;J".(;'~~+,J,.(b/C) ". CIA- 27T/lt,p,{C/II.)+f,J..Olc)j to. to
AI.S~t UV~,
V o,v"U pJAtu j Tn""
it :;,
.'. (,E, - ElF.. ... L, _*6. Q- I,£, A ,
10 .21
£6F.A
v. E,J.,+E,._,. E~(~.t,.a,) _~J(r,~:+c.'I) Q ( , E,A A c· v · (l,d..~Jal - (d.,f" ... ;Jt/II) '&I~/o'''J((.100)r
U • .lev'"
'IC.(JX/o"fJ"" JII.JcrVS))t 3'.".XID'
«1
E. V/rJ..
."tJ.
E ( ..... ~,.) • £ l ,;., sf... )
SW ..t ". G, - U:rA .. t.E(a.-x)~ St..£
.t
.Ie+-"):: .. cQ:}t~"x" fE(X
, E.
:. ~Q.. Q.N.- QIC- EtAXh - E..E~~J. - E}..6X{ £-1.) :. 8&1.tc"y ~"",,~ .or.'c. 4A.'3j b~ -Me .,~.~t -f If' ~ Uo - ~61·\I. ~;,~X( (-E.)V -7A~1( £-£_)
S-I-.,< el'l~!J i""v.~u. e;iMc. +0 /-lit, ;:"cr.f-AJI·"J
"1
41X ;$
~U.- i f · V.e.X;h-1'*V~~h.t ~lIJ6X(r_t.) :. 6U=~U~-4U.·- i-fh~X(E"'I_) AU
v'
:. F.&-tt-z;r"(E-I..)
38
11 I •
V
~
~
(,,) fs"
"1>=/," A 1>
(#...
E=7· ..H. UE c
1f. (A~;; ~(,qs )
=
~;j ~A
\~) F = -
t.
pllh t>lJ
f.,"'" +•• ,(s -fo
::
-~..
2A£.
elver., .." UE< . 7 h"'fo--
39
fl.t fin.
,"s /i-th"4,f""L.
11
368 r.onnl1l::lOr
Conductor
Cuu,ju"lor
., %
~
+, _ 0 Case II
Solutiun Thch niques
"''lure
"'1.1
Cue JIJ
Problems or
11 . 1 Consider the thrAll LlOunuary-volue problem!! !lhowllm Figure P11 I The Milltion UlSf'l I is <1>,. lind the solution /'If Case II is "'1< In Case III , IhA r.hllr,!jI!.!H/,ltnd Q2 l:HC the sumll charges Ihal appellr in cases I and II, and thAy IIfJVt!ur in exactly correspondinll positionH. ExprllSll <S>, in of $, and "':.
11.2 Consider the IhTRA buunuary,villuc prohJAm.~ shown ill Figure P112. ThA Milltion uf CaSI! I is "',. and Ihc solution of C:ase IT is "'I' In Case Ill, IhA .. harges Q, lind Q2 orc Ihe SUint: chargcs thaI appear in C8St:S I and II, anI'! !hAy IIppt!I:Ir in exact ly corresponding positions. Nole Iht! differences in the boundtlrY conditions for Ihe three ClilIeS. Can.J hfl Axprt:SSed in of "'1and 4>21 U so. obtain the exprp..Mioli Ir not. explain why_ 11 .'
The radius IIf the innl;!r conductor of a r.oaxill.llint! is 0 and that of the ouler conductor ill o. The potential of the illllerconductor is Vand that of the outer conductor is zero. There is no volume chltf)!t: density between band u. Slur! from the Laplar.e f!quation to ohlain the potential in the coaxial line.
11 .4 Two concenlric conduclingspheres have rarlii ultnd b. respcctivelyth;;. 01· The ouler IIphere ill CIt zero potential. anrlthe inner sphere Is main lainp.{1 at V volts. There is no space charge helwAen the conductors. Start 'rum Ihe Loploce cquallon til ohtain the potential
f rl for b ;>0 r ). o. CunJuClnr
\
•
Ca.II@I
_ 0
Conductor
ConJuctor
4> _l 00V
C3s.>11
Cas.' III
l'e(;hniq ues
P robl ems
369
1.1
;ululion of Ql 3re the !sponning
:olution of Q1 3re the ~sponding
~s.
Can 4>a l::Iin why.
:onductur or is zero. t!(jualion
fhe uutA r lere is no 'utllin the
InSlilarillg8 up ,~ -
0
11.5 In Figure P11.5 a {;unuucling conp. i.~::It a potential Va. and a small gap separates its verlex from II conducting plane. The axis of the cone is per~enrliclJlllr to the conducting plane, which is m
'*'
11 .6 The uppflr pl
'*'.
11 .7 Model a de vilcuum · tllhfl rectifier as two parilllel platfls with a Spilce dlllrge in Iw.tween, as shown in Fi.l!ure 11.3 . Let Ihe separtltion be 1 cm. Find the voltilge needed lu prmlllr.fl I Alml current.
11 .8 Find the surface chnrge distribution on the vertiC31 and the horizont::ll conducting Willis for lhe case rlisr.l1ssed in Example 11.8. Plol p. for 7. '> 0 and x _ y _ U. Lei Q _ 10 ~ C,andQ - b _ l. 11.0 Find the inHl)o!es uf a point charge netlr n corner uf a conductor similar to the one shown in Vigure 11 .11 excejJllhlll ¢.O _ 45°. 11 . 10 Find the c!ectru~tlltic forcfl Ih::ll acls on the point ch
to.
0, d) and is due lu
11 . 11 Calculate the capacitcull;e IJflr mp.tflr of a 12-inch (0.3048 mJ-diamfltflf steel pipe locllled 6 ft II.A.1 m) above and pOflllJel tu the grollnrl. 11 . 1.2 Example 11.10 slote~ llml the milximtlm electric field on lhe surf::lr.e of the conduct. in)o! cylindAr is located ot the point ll1mrest the ground. Show the villidily of this st3tement by jJlulling Ollt E. nn Ihe surf3ce as
11
370
Cundll~tor
I'"
Solution Techniques
01
Flgur. Pltt,tll
11. 15 Equation 1I1.42J )lives the polenti:!1 dUll In II lJUint charge in the prf'_wnce uf II ~ rounded
wnducling sphere Equatiun jll.ol41 gives the pOtfmlia! ,Iue Iu II point chorge in the presence of an isol.tt'd sphere carrying no opt elia!')!!:. From these resultli., find IhA polfmlial JUt: to Q poinl charsI' q. (/ IIlCIt:I'S from an isolated r.oncluclin)o! sphere tAm y ing 0. net charge of fill_ 11.16 A lint'! r.har}!!: PI is insidc 1\ conrh lColill,l( tUllnu l of radiuli. 0, a.~ shuwn in Figure PII .t6 Nutice that the liM char,llt: is b meters off r.An IAr. Firu.1lhc potential fuor:tinn in tht:
tunnel. Ilinl: This i~
I)
compiemAn ra ry pl'ul,lcm of the one !lhnwl\ in Figure 11.1 2.
11.17 Calculate Ihe forCA [lpr mettlf aCling on the linA char,!!!! in lht: lunllclshown in FigurE' PI Llfi.
11.18 A point (;harMt: Q is inside a J;pherit:a.! cuvit y 01 a connur.tor. Ii~ ~ilown in Figure Pll.16. The radius ofthftclivily is 0 and Ihe cav ity ill rllltKI with air. (a) Jfind the VOlential" in thA cllvity wilen b. O. [h) Find Ihe surface chuge dellsity of the cavity Willi when b - o.
(c) Find the potenlilli 4> in tho cavity when h - ul'J. . (d) Finn the sur£ace charge denf;ily or the cav ity wall when b 011..
11.te Calculate the elP.r.trolltlitit; force acting on the VOinl c harge in thp cavil)' shown in Figure PI1.HI. 11 .20 Sketch the E linp.ll due to 0 point chargp nfMr the intc rfac(' of Iwo dielectric media The ,llilualiull is similar 10 thA nne lIhuwn in figure 11 . 17. except that ( 7 - 0 ·5f 1· 11 .21 A rectangular conduc ting trough of widlh u and height h j,ll maintained at zero pnlRntial. as s hown in Figllrf! 1'11 .21. The potenlial nn Ibft IU[J plate. which covf!l'!Ilhe trough. is known to ue 4>{K. bl - ZOO lIin(2u/ul volts Find the (lOlential 4> in the trough. There is no volume chargfl in the trough. 11.22 Three sides of a recll:lll)(utllr conducting pilH:! 111'1: grounded . whllfl the fuurlh side is maintflined allOO V. OS shown tn FiKure Pll .22. Find Ihfl pohmliul in the pipe. ThArA i9 no volume charge in the pil)C.
'" '0./"
- --"
•
Pie"'.
"11 .22
~I----I /oo\-> •
,u..
Problems
371 .
'1
,~
A~,·" fu. OJ
1"19U'.P1'.2~
..... of ,
.-,oovo
I
E
)
•
0-0
f
• I
->
•
. - 0 I"l eur. P1' . 114
11.23 The lJoumJulj' potentials of II rRr.langular conducti ng pipe arc shown in Figure PI L23 Find the potential in the pipe. There i,l no vol ume chaTgfl in Ihe plpi'! .
1ere
11 .24 CUlilliuer the boundary valu!! probl/lm lihnwn tn Ftgtlre Pli 24 The upper Qnd the lower conduc ting plates are mainlQintld at :':I:I\J ~lentilll. Thl! IllatA III the left is IIHllnlf1inflfl fit 100 V. Two gilps insulate the side plBte from the grounu . Tht:re is no
1.16.
volume charge in the reKion and
fintl
'he
tl4UUlioll1l.
(b) Solve Ihe differential equations. (The rUllet ion involving y must be Il sine (uncti on.]
(e) Mateh the boundary condit ions. and find thft fiMI Mllnion 11 .25
1
in
:Jia
A sphftrical capacitor is filled with a dlelectrie material of (1 in half or the s pace and with ano ther moleriul of f l in the remaining IpIlCIt, I'll shown In Figure Pll .2S.
{a! Find thtl pollmtial function
011
till: inne r conducto r and Ihlt
em
'he 'he flis
"'"
Figur. P11 . 25
" b
CApACitAnce
of this ca-
•
CHAPTER /I !!d. CA04 I , 171;6, a il£ """ II!' 0 ~" HIe ",,"-,IVy c.. ,.. JL' t7 '9. - l'll """" ~ - 0 ." Me. 6_ ....,,"":1 .,;.0.. 9!+~oO .,..I!.. ~'-""'-7+
.: v·(?,+?,)_a.·r.)I£ II. t.
c.,. I,
17'9\ - t./l ~
c.... JL , v¥, • t.1E
i.-III-SII. '... c.. ... JJr
9\.0 ... ill .. 6owoJ'~J ;. .100 ". fA..
a".I
,--,,'1
~ 17'(1.·/00)- 2'/E <&no( ¢.-/~'D "".ole 6,.."J"':t .'. 17'(
-
II. ,
9\ • ¢, -/00 ,.; c"
pol •• li.( ¢ 'J I"~'~"""D/ f 0.1:1 ~ V'¢&7fr(P:~)'O • ."s- C,Lf''', ¢(a.}:V- C,La.~(, 0..-< ~O)=o=c,L.'''c. '9 'i-vIL(i-) """ C.,-VJ..6/1-(1-. :. ¢(fJ- VJ.f/J..(t)-VI.-,/J-(~) - VJ..(-f)/J..{~)
v'~M-}.:r(rltt-).o .. ~(r)= C.-Ci;,. l(A)-VOc,-t./a. ~ 1(6)'0~C,-('./o :. £(,)- y.~y~(1/6-llrJ '
v'~(')·
r's';,.,+,(Si'l.9 :[) -0
:1. ~f.',
*'
-> ~(8). c,£..(f.tt.,..1)"'c~
~(9.).v. .c,J.,.{Ic.t)+c, .,.{. ~(qD')-O- C. :.
2(~)z v.J..U... f-)/.L.(~:)
aNt
~
c,~v.I'£"(""{<)
"""- cz·o if'-vf(l)o-;·Hf.~ -; I'o/,.I-.(J..,,~)r:..e
""'f."
:. (,.£E·§c-£V./rL.( .... ~)$NJ, (1;. ... f,>0 iJV,>O) II. r. v'I.,;ll/~~'&'o ... I(IJ-',,+cz ~(D).'O.C, .""~(().I)&'a.IC,l>eo~/oo*c, •. :. flO° -Zoot- 80 4-f K .I-_"itrrlll- ' 2",,'WID V~ .... VCI:J..2, V JJ.:L J -_ ,;r{2q," V .,.. I 9"(10"')' q.II~/(r~1 ~ 1= f,;tf v~, - YR,' Y.f, - Yft. J, ",~ve Il, _~·~('x:._-,T)l-.-:.,.·.-(l-_-,-;>' , R,. )r(-••-,~>.-.-~~l.-(I-_-,).,.·, IJ •
(X~I)'~ 11+ (;'+1)'
I?". J(#t-d.,. '1'+(-1#,)1
~J.
Ea- ." .. -Lfx.Ot·,)I-;,t1('-t'_
1<,'
1rf,1
Vr
0'1,11e.. " ....J.ofo.t "''''',
2· 0
~C1Ctl) .;'f'i(J~)
....
~{a:t,)+rl+1(1"") _ ;'cr.,).,.;/.#(J.t)j
R.! E _ .!. [[(,x.,f. 6,.,]:il- [(~"'" ~'" J~ 1 ; RI
"""
10
of'
~"l
.'. r. = Uf·' • • ~[[I.;J)·.~·.,J~-[(.-,l·~··,r'~l 01'\
F.,.
tJ.e. v~·cd 1,oJ4iL 1
a.,o' x~,~o
--t
t!..~ ...~_~Z
11.'1
),-0
E - k{(,. ,,'.('·')'1""'- - [""'1 ' +(1. ' )1.].* J; EI<·~o Jrlft.,'.( ...fJ-Ji-[I''''''.'>'J-IiJ 4#'tt:/.
... f,. t~/O·'C
I
_, . '
r, - ~:: (Q+cZt,)'r*_[lt{l·Jl]·Jl4j
.
··11
'.·t
,
:
.~
~
-~- -.-. -.~"'--""" I
/
+\ \./
,
F~
"
'.,--"'\ ... , ,/,
- '1• - flL!;!2. F· fOr, (u)' - , 1!J.!
. ,
,,'
It!"i-
~~u)
(.II./D).
-l'
.,.~-...,,-
",,[, ..'
c" 3."£../UJIJ,·'C!> - :".. Ji".1t/D-/~sIt-I("'::') - I70S ~~f/n, 40
~
zoo
..
-
.",.
,,.
1/""
~
tf.'f
,
,
I
"
•
t', , ,-- "
,
"-
·k
(f" J.'-z/ti. (6,;) II, .1'.' (t'. /, '- 'Ph r..~) Y, ... iI(f,;)- -/:r[J..(t'//t, )-.£.("/d.)J
P, &
•
a:t
I.b,~~o
lC)
::
(rl.rd.'_arJ.U){PI'a.
A~ -cr'#r.'-u·r;uu)"i
~,
/ -
t=
-J~
41
"""-
jo
-I'..
",il/.,
d- •.'!I>
",;!Iv ... -",'/6
-
1f'
f - '1:;..f(T.&;:..",;<1
11. 20
. , A.
(,.).1)(
..
' J
1/.1 t
f
•
?}.. ~'
.
,
,
,/:, '" , t.-T ----7'"-t, ---';:F ,
• •
,
\
/
--.-~\. -~ ---{~ \
I
\
.
I
,
'
I ; '-
\r
(-,1.)
:,~t
-() .. ,J-
v'1 - 4 ""'- iI-o .. :!..:~~ 1t.. (AC'S~%'B.;.ix)(CU.!t..l·Ds;.J,'}) Ito,O·o. A-D. a"",>-O. C-O :.I("-')-65;....~ . .;..;..I.J
*
"'. '.
1(4//>-0. -~, z, 3, .,. .", #, .. ,> .lA_ ~;""(~J:) S;....f(TIJ ." ~ (;t:,i)- zO() S;,." (Rn/.. ) .. s.;"'(=Ek)S;'..,Jd~') ... Ma2 ....~ .,fa • .200/S~(~'J .',
t.,A....
~(·,1) - ~(iE4) S':'(.~.t)~.:..I.(~!i)
'l~.() - t
h-o .. f!,.r;{.-o .. ~,.,I)-(A"'H"'6S~"XCWAI,1)s;.JI)
~(D").,,.;- A CC J #(~.O).O" C -D
.. ... . ,.2. ,....r¥') .'.
i(~h)-o. ~-r
~(·.1)·'DO- E:,A""S;""I.(~")lj....
(J~H.o,.~
J:
J
:.
Ef"'1)- s.ir..A~z~;"'1
..,
#("'1)·!A_S;..J.(T%)~(TlOr,) 11<1<'
A .. s;,...A ~J ',DD$,.... (T'I)dl. ~(I- us_r) _ [ 0, 1ft. Il••• I
J.•
lOOSi'L(TlJtI,
II:'
"."
".,,,...:~.........,,J
... Am"
r.JIl"e. PII, 2; 30
11
' "" . ~..s: .... ..",(,
;~ ~ .¥.rp~I ..I. .."
0/
Jill""""
"I
C4Jce
f
e; ,.,
j"t.c;y) ••~ ... r' .....~.,...,..)
'~("""xI,) s~(.rl/J)
I
""~~".:.;...-.,. -. T
C·,,)
W. 2-
tot.. ...... M.
1; N.,.t' '.
Po i4A/, .. l ifx.'tJ;'" .;Nt I~. I (r, ~).
s.i&.J, (--¥4.)
f
Cu. L III""
J,
-Me (.U,wi"l -hw e..JU
Ca.')
A.,
' ••••
....,y_rr , '" ."
(~"'''':''''':''''')~~ C4.Sfj
f.'s . . .t(¥I)~1 • A... f
~
!',._II , 11.11.
111l.').
("4.1(.2.
C-A-II be s.lAJ ....
'J cM"g ;,., iJ.c.. c-Nf.#Iai.
1• . . rrs::r~d)..r Si....4{ "''''/-.) ~(".".X/4.)
""'t. ,,'pf f~ .......... ;.". ~'J"'£ PII. ~ J I~ ~ e.,..J.·,...:I"~1t. '" edt J.. .,.J. i -.«t 1:!! ( ~(7'X/')s;",,(.."rll.).. r ,;....H .....,,/... )s.;..c-r-l/.. ) 1 III" SI....AC ... Ir.;.) eMIr'/c.) $i.v.
....
42
d.f.U'
-
11, 2+ (4)
(tl
1>r' ::;
=
1:>n (d )
..
(I_I) ~ b
V. £... (I_...L) ~
!)
'
Vil (,
It,
== lIT ... •
(::
b
-L r>
'n•
...""w" I
/
,,,•
ttA~J;IA.'" 1.
y;:
D., (,-...)=
V. (/
lIT
'").((((, +t,)
v.
ri - t)
43
(if -tl
Q lrnmtl
Pruulcmll
Solution:
387
The resistivity read hy the !IOnrlJ! willlWl infhLf'nr:P.rl fly mooillm 2. Thus, IhA Mmde Will nol feMcJ p , to \1'11\. IIlthouxh it is IOCillt:u cOlinll), in medium 1. To find the cxpt,.'Clcd read ing. we must first calculate Ihe potential detected at /I We solved Ihe polf'n liaillroh]pm In F.xampif! 12.S. In the presen t Clist!. \\e Imve"l _ 0.1,)( _ U, Y _ O. " 16 in. x 12.5-1i HlOl m/ in _ 0406 m, Z f h - 32 )( 25<1/ 100 m - 0813 m. and
I.
l' _
1[° 1 + 0.01) _ 0.8181 01
0.01
'l'hPfPfoff!. according to r12.2211},
-,
I [-I- + O.81~ -;--'--;" - - -I 4. x 0.1 0.406 0.B13 4-w
134.11
Substituting the above value 101('1)1 2 26), WA ohtain 2 . 5~
p, _ 411' x 16 x -
100
1 x - x 34 .7 _ 14 I n·m 4 ..
Problems 12.1 A p(lf
The lul(ll area or the plote is A The dielectric constan t and the conductivity nf nne materia 1are. , an n q h rf!RpoctiVf~ ly , ThCllle uf Ihe Olht!r lIIult!rilllllre ~ 2 unu 0'2' Finu Ibe f+(llIlvu!tml dn:uil fur this parallel pl(1tc. and express the circuit paramete rs in of A . d, ' " 0" ' 2' and fJ l
12. 11 '1 and
12.2 A pilr'dlld vlule is filled with t .....o materinls In Q configuration s hown in Figure "" 2.2. Find its equivalent circuil, and exprp..M IhA r:ircllit paramfllfu's in of A tbe .. reu nf thf! 1l1a1f!. and d,. <12, t ,. t 2' II,. 1llU11l2, which ore defined in the figure .
, dary
h.811 exact IIff'nl
12.'
A cooxialline haslwo laye r.'l nf in.'llllatinn . FigurA Pt2.3 shuws the Malmetry. Find (. ) Ihe IJUlt:ntial 4> , fo r a < p ... b ( b) the potential 4>, fnr h ..: p '" c ( c ) the resistuJ\<:e uf a section of such a line'! mete rs long
~ltI .. · .
"\' 100 1
dlf·
boun· t reo ~ 1i ve
~Igur.
P12. 1
.,. ",
'.,".
1.-wl2_~
wI'!
I
"'tI",. Pt2.2
[
' " 0
,
I .. '"
j] -1 ~
Ijd.
P 12.:1
,,.c--r5 -,,:; C2>' h)~ ./ ," I
1•
I I I
'-- '
I I I
-1
I I I," _ _ J I
\
:--........
.....
_-
---"'
I" "
I
12
388
Direct Currenls
y I, .• ,
-~-T I •
,
Fleur. "12 .•
I I p'. I I
,
0
PArfocr conductor
y /
,
,,
',20 ern
*'_I OA I
' IOcm ..........
',
,
/
/ ...~ R
...
:IUcm
I r 2{lcm
I
Perfect conductur
fI-O.Glmho/ m
,
.,
12.4 A lIphericctl conuuctor of radius a is inside a spherical conducting shel l of radius c. Two malerlals arc used 10 fill the space between these cnnnll!':l n n!. The dielectric con51an~ and the conductivities of Ihelle malerial.\! a rt! (,. 0'1' f l . It:_ respectively. FiMura P1 2.4 shows the configuration. Find the equiva lent circuli of Ihis system, and express Ihe ci rc uit pa ramelp.fs in fArms of Q, b, c, t o. fl'
12.S Two oil wells ilrc 1 km apart. The resislllncc between IWO steel pipes in these wells I, measured li t lAIIi. What is Ihe conductivity of the ~roUIIJ I1Imr Iht:lltl well.\l? Use the
fulluwinH d(l\(l : the length of both pipes - 1 km. and the diameter of bolh pipes - 10
em. 12.' A currenl e l ~lrod e is ncar a pcrf~t1y conducting plate that Is bent to form a 90corner, as 5hnwn in FigurA Pt 2.6. ThA output from the electrode is I UIJl~r~~, und the material fillinJij th~ spact: has a conductivity cqual to a. Find the potential function
"'( x,
y,
1.1.
12.7 A currellt electroUe is nt:ar a perfectly conducting plate that is bent to form a 60· corner, as shown in Figure PI 2.7. The electrode prodllcftS 10 A nf r.urrAnl. anrl lhe mate rial filling the region defined lJy 0 .~ ••~ tiO° ili wuter wit h conductivity equa l to 0.01 mho/ m. find the potential at point B shown in the figure
u .s
A point electrode puis oull amptlrtlS of current above a conducting piane, as shown in Figure P1 2.8.
(_) Find "'Ix, y, zl for z > O. (b) Find Ihe current density 1.lx, yJ al the surface of the cnndllr:lor. (e) SlcAtch the paths of Ihe current flow.
4 Pmbl ems
389
fC I
I 3m
I
I i
0a.1 SlIIl
'%\"\\\'@. '{
{~·;\. .:,fu"\'\~\~
C7b 2 S/m
FJgure P12.10
12.8 For thtl Coltse shown in "'igure 12.9, find InA pfHGAnlagA of Inti curren t emitted from
Ihc elect rode crosses the boundary ond cnters iUlllcdium
"
f, _ eo
ius c. celric IVAly.
and
t:urrent, u show" in FI,I(ure P12. 10.
(al Calculate Ihe potential at point B. (b) Calculate the polentillial point C. 12.11 A wAII.logging rAsislivHy lnol similar 10 Ihe one shown in Figu re 12. 1215 near a buumlury between two beu!!, as shown ill FiKure PIl.11. Tht! boundary is making 060" angle with the well . Find the ilpJXlrcnt resistivity measured by this tooJ al the po'!it!on "hown.
,p.lhA
12.12 Rflfflf to Examplfl 12.6. Ohtain Pe (the apparent resislivity mtl8surtKi by the tool) as o function of tool position for Zo" j 160 in. to Zo" 160 in .. where Zo is the position of the center of the tool (the midpoint between electrodes A And UJ relative to lile uuulluliry. Clilcullilc Po for Ilt ICllst 21 PoiUls. IInu!)lut Pit V(1J'~US lon.
. - 10
12.13 RCOf Problem 12.12 fortne situation shown in Figure PI2. tt .
t.
ells is
• 90' d Ihe clion ill
SO"
d the nallo
".~: 1"" -"'",'" •
I
I
",' I
I
-!
I
'" ..'
Figur. P12 _t 1
P. - 1(11)l1-1n
12
390
Direct Curre:nll
12.14 A point electrode is located at (0. YI' nJ. lind 8 perfuctiy conducting sphere of ra· dius 0 is located at (-t, 0,0) as showl! ill Figure P12.14. The electrode gives I amperes of cUfmnl. The cunductivity of the medium Is (7. I"ind the potentilll oil on the y axis. Hinl: usc (11 .44). 12.15 Consider a woIl-logging resistivity 1001 simillif to the one shown in f'igure 12.10. Lei the spacing bel'oWtlll the current eloctrode A and the potential electrode B be 6 m. The tool measures the conductivity oflhe earth furmation as it trawls in a well. Assume thai the well es near II mineral deposit modeled by a perfectl y aliidueling lIphertl. 8S shown in Figure PI 2.t5. Find the Apparent resistivity measured by the tool as a function of y. Use the follOWing data : 11 • 0.0 1 mhnlm for Ih. grou nd ; the radius o f the mineral deposit. 50 m; And the dillhmctl between the Ctmttlf of the sphere and the well • 70 m. Plot 0. _ _ versus y for - 70 < y < 70. Hint: use the result ohlAined in the proceding problem.
1
,.•
~
,
11-' - '- - 1
y
•
6m
• - 0.01 mholrn
•
Flgu ... P12.1S
13.1
Magn
CHA PTiiR
a,c ....... "~J
+-;t.ii.J.. E..
t. W
........t we
f.·.Id.
F,
"""t,·"MO\,U..
CO.,,/" ,"II).
12
V= 6,"
= E1.
=8,01
v
T
C.. I"I
to--;;
c. .... s:Dle,.. i.f
C.An
.
"• 1·1 , Ita
4lJ
...
r. ' .. ~
c,
.. " .7
2.
~
fA.
I3tc ...... ,t
t. 4t (..o"+i", k..' '" I ".~
...... ""'"
'< +""
t h•• r , = X.
G4.V'r"f" J
c,,,, Si .of.,. il-
i'"f~rf~J- c·rc.tjft,I"J /"
II,
£.,tr.
II,
t:,.'i
T
f"
"
4,
(.
~.
Se',., · ~J.
r
:r
,I ;/1. 8
(4)
,"
(Cl
"" f' oQ iii.
(I
"
II. '"
(~far.+Pi
'1--1£,
X_I , ~, b
.
oS
=
<
UI, r, = ..........
" "
q, =
, :0/,.
i.
{; .. ~,k Il . ...
- ...
Ifnl"'j -I.. ~
C-
~lT~ .l.._..L..
... •
44
"
ti,
C,
Ii,
4 ~rJ
~
c.os;."(lVII.)
I
i L ." ...~ ". ~." .... "
'''''It-'CYA..) .c:r . 7r.t,
A._
5'>e,.'_ . r;.--1-
",,I,-I(r....yl"...-l) I t!J '"I .14' r.c/o' "'7:Ti': 7·2 f~/P ""/,,,
,;......'c ""c.H-.d..: ~(·11) • ..L(.J._.J. • .J._.J.) of, II~ ...,6 ...., I Use.
. . ...rr
R/· (t~-r.f.(,- ,.)'.,' J
alLu(,.
/16,. [(7-.~.)I ... {'1-'I.)'·i
-. ,r-·
, o
J"-
• r ___ 'I__ .J-:r l
(~"f;,0)
1.I
( ••~-'1.)
,
t ....·,.,:
lAse ilf'l*'j t meH.Nt:
G.J."l Il,
fr :,.
----., -ik>+--z " '
"-
RJ • (fhX.l.l,-'1.l'· ,') ~ 1 ~ • [CX_L)'. C''-'1.l .. J' J.Ii
,'.1
-EU.~. ll
! ...~.:;J(..... )
('-!lI.)
z
[(').."U')·+(I-.')·" J') lS.) 12,. ({~-AJ4'l.. ('1~#.Jl. ,.IJ4. ("'.. M,.:'i;-G.>!l_
Ra .[).J..{; ••.•
,-."J' JJi
I
Rs - [:t'+f;+D.•
l+d'JYa.
A'.s • {{x.·~.J4'l.,.', .~.2f+ tJJS." /4.- [(&",,,, ..,1+l~+"' I.!"'J·jJ(
at
lJ,
/1.,. 0 .:2 WrH.,..
,'.8
x-a",]"'1 ,,-o./Irt, ,-
hi .
D
~
~~. d,l'" "" J ~J. (). S'~91ftJ R,. -
~. "-O/~ r -'0: § •• ""!!.J
r{
c.
''''.I
~,. 0. S'21'" .I
(Ai-.. J, f"ui;" .,; ." ...il- .. ~z) • 1.1
I
(4) Ebv1.l)-;trr, (,:IJ .. ,J"",->.)I -'1i.,I.cj,.JljiJ '" F r (:1"1.,~-h •••• J .~ +,,1', "{)-l.)'j"'- [X.'.1J ... c,.,:?J"
f Jj (".1)- a; EJ h·. - - ~ (;Z,.:C. J:)W --g.
(c)
It,. a
SaJO"Ic, A' p" " '''''L 11.1
45
J
J.I.I,-
la' v
for D4~~r'.r i"
~
IIt#J;w,"
-tJ..,.
#
.,1..... "'"
S:I"'ATi,," looks ','ke
J• .( ,"',. " A.'".), .. c....J ,..,J........ of U; . n,Uf{.r-t. i .f I (.r,'S +~4.
So""t'rt.x. "
I ., ... t.1l
_t
J
II
.,,.,,
A.lf ~ tI..
I.t. t"- /.",1£
x-A.iS
.
.
c.rl1lf'IfJ "_ .. ,,., =
v·
eNi,:,
c-..t'( ... f
·f
S,.""
~
~_ O'i ~I - a;-.,.~ I
)1- ...
!t's :: [ 0-; / (o;.r. ) ]
Jr
I" ,.
I'
I
I I
", I --/-1- t( I
I
i
l> )
-:Ir.::'c.-_r.:::..
I :0
cr.., ... r 4
r;
r '" -• J
,\1
'I I
ct. ::.
I"
"',p.r
l= I";
i
"t (
.... .,.,#' ..... ,
I" f
11
•
I
I
I
't
aa. .. 0;
I/
...
I
~ I"
= J
.../J ~lr'
r.
iI-
o-.. rJ,.
2. CI"'"
::.
1
I· 7
-=
IS.
46
2.
.. V
•
I.
I~.II
,, z4",
,
J• ...
'i
; ...
~.
g;(f!T
...... S",
I I
I
I I
.. SiJ
I
I!: v , " , i"__ , "
I
L
.J
s' I!
48
/oJ Cl'~) 'ID'
-----H'
,.~
--
•
•• •• ••
fo'
. ,
,.,
d
·s 12.15
F1'0,...
p,.., 1.3.:..!J:.
.~
.
......
., ,
I
•
••
I
1.(1,). 4trfN,/!IlIJ/r: I!:-ld
..-:-:,-:-:.~a.::-,~[~....;-=~+ ,..r;;""'~'J ...I)i I(,/,.1- -,.,;; "'Ji(~,~.tt ..) +~ '(',I...l'rA'':U A ·
f..rl,).
'DD{-f-
,
Ji/!!!. ('I,l;Zf«»1.5'9 .. ~i !IH l U."'X ..c.;4'.J-as-,j l ..
:. d;(,.,,- ?.~,.)
~ t:r...(I-'>- ~(V.)
I!II
P (n.~)
A--'e...c
-------------~---
'-
---------
. •
!, 47
II
!
13
422
MIl8 n tllOILIa l ic Field,
Oecause magnetic fi e ld is present in the wflxial li ne. we know that magnetic energy is stored there. The mngnclic field is giVtm hy (13.7): -
1-1. _
I
b>p>o
Z/rp
{
o
e lStlwhere
SubsWu ling the ithove ex pression in (13.34). we obtain
Utt .. ;
2
JJ
l
lo
0
dq,
1"p dp 4,..I:P
l _
g
,1011 %In 4".
(~) U
T his result is the sto red magnetic e nergy pe r unit length o f rhe cooxinl line. Conseq mll1t ly. we Cun calcula te lht! inductance per un it length IIf tht: line from [ IJAl j: L ..
~ In (~) 2'11"
{lJ.4Y}
II
Th is induc ta nce pe r un it length also appea rs in Ih H tra ns mission · line repreStlrl tHtion of the coaxia 1 lim~ in (6.191 of Chn pie r 6
Problems 13.1 "'inri the IIIll,l!nctic fi eld " althA cflIlttlr of a square loop carrying It current I. The side uf the square loop i.~ b meltlrs long_ 13.2 A r:in:ulllr loop tha t has ratii ull u amI thai carries a curren t I IJrOOuces the some UllIgnetic·field strpngth III its center as thot al thA cAnler or u square loop that hall lIine band Ihat cll rries the some curre nt I. Find tht! ratio of b 10 0 , 13.3 Consider a la rge con cl uct i n ~ plate of thickMAA II locutt:d ilt
in Figure PI3.3. U nifo rm current o f d e nsity ulll'egions
I is flo\\ing in
d/2 .s y . d/Z. all shown Ihe f: ni rection . Find H in
13.4 The eH rth's magnetic fie ld al the norlh mognetic pole IA approxilllHtcly 062 G 11 C _ 10 • Wh/ m:j Allsume thot this magne tic fill id ht vrwuccd by a loop of CIIftll nt fl owing II long tht! t:q ua tor. £Slimal/! the IIIH)!ui tude of this Climmi. T he rutl ius o f the mirth is ap proxi mAte ly 11,500 kill, y
d
l-~·-/ .
___. Y-
Ftlur.
~
U ,:I
l,
,. i.
"
'"
11 11 Itt
13.5 An Infinitely long tubulul' (,:undut:lur uf inner radius 0 and outer radius b carrit!9 II direct curTent of I amperes. as shown in Figure P13.5. Find the H Rflld at fI: where (a) p :;, a, (bl a .so p .so b. IlIllI (\:1 b ~ p. 13.8 An infillltely long tuhular conductor has outer radius b and inner radius a offset by a distance c from the axis of the Olllflr cylinder. as shown in Figure P13.6. This eccentrir: tuhular conductor carries a direct current of 1 !impArl',&, Find the " field at point A shown ill the lisurfl. Hint: Consider the tube to be a superposition or IWOllOlid r:ylinders that have radii b and a amI thlll !;1m), IIniform current density 1 in opposite diret:tiolls. 13.7 An infinitely long wire is bent to form II 90- \:ornflr, al shown in Figure P13.7. A di rect (':UlTt:llt I nnW!! in tllfl wire. At point A find 11'10 H field due 10 this current. Follow the steps given below. (a) Usc tilt: Biot-Stwllrt law 10 express the " field at A due 10 It typical segment of wire dyon the wire axis. Express tilt! field in rectAngular coordinates (b) InteNl""dtt! the rp.!!uit ohlained in (al to find the H field dUt! to the semi-infinite wire OC. Note. to faci litate inteHration, lilt y - fltan fI, 110 thai dy _ a SCC Z 8 d6. ( c) Finrllhe H RAid Al A due 10 thc ~mi-infini l e wire 80. (d) Add the results olJtuined in fh l and (c] to yield the lotal field at A due to the current in the wire DOC. 13.8 Follow a similar procedure 10 the one rlltllCrihed tn Problem 13.7 to find the H Relrl at ~inll\' . 8.'1 .~hnwn in Figure P13.7. 13.8 Consider a circular loop \:lIrrying a currenl I counterclockwise. as shown in Fi8urt! 13.11. Plolthe mAgnetic field 11, on the z axis for - 0/2 -::: :t -::: u/z. Find the value Z. in lerms of a. such thllt. ;rl:.d ..: 1.., then H. ill uniform within 10% of the valut! uf H.!:It Ihe (".f!ntf'r of the loop_
13
424
Magne tos' . I\(; Fields
,
PltU,. "13. 10 Helmholtz t'OI!t.
,
13. 10 '1'0 ImprovA the uniformity of Ihc magnetic field along Ihc Axil! of II circullif loop (see Prublem 13.9). onc may use two iden lir:alioopil S8!)l:1rl:ll~ by tl distollcC cqu31 !alheiT radII, as shown in Figure P13.10. Such II pair of current-carrying 1()('1pt; i.. r.illlild Helmholtz coils. Find H, as 3. funClion of z on Ihe axis of the Helmhult:e coils. Piot H. for 0 < Z <: o. Find, in terml! of c, the valut:!:t,. such thot. within the range Izl < 7. H. il'luniform within lO"k of the magnetic field at the middle of IhA two coil" CompiHe your res ult with thai obtained in ProhlAm 13.9 for Ii sin)!]e loop.
13.11 A 5tjuArA conductor loop 20 IUcters long on each side carries a (Hreet cu rMol1 u shown in Figure P13.11 . laJ CaJc:uilltf! Ihe magnetic fit:ld B al (b.O.O). Express the magnetic Reid in of 4 integrals, where each represents the contribution from thtl currellt all each side of the squaNl. UIWt the Biol-Sllvilrl law. Do nOI try to integrnte those Integtlll9. (b) Assume thnt b is much greater than o. Now, INllluulll thc inlcgtnis approximately to ohtain an approxinllilll value of B at (b,O,O). y
c
T "
. I
lb. u. uJ
,
Flgut.P13.11 A
B
13. 12 A surface chAtge of P, C/m1 is uniformly distributod on a t9Cord disk. The inner radius uf thtl disk is a and the outer radius Is b. Thfl rACord disk is turllinlol at II constant angular velocity w radII in the duckwiStl diruction. Find the mngnetic Reid at the r..anter of the disk dUll 10 the surface charge on the turning disk. Ignore the prestlllctl of the metal post on the turntable.
< Fields
Prublflm s
425
13.t3 The tlHrlh's magnetic field at the equtllor illllpproximlltcly B _ to late the cyclotnm freqllfmcy of the electron in the ionosphere.
4
Wb/m7, Calcu-
1:1.14 lIecause natural uranium contains a slight Illlluuni of Uranium 234, llit! electromagnetic: Isotope separator I:tlil also yield U. If tho radiuli of the circular path for I)lU particles (st!8 Figure 13.14) is cquollu 10 m, where should one place collectorI for U~ U and 2:HU partidell? Expreu spacings In melers. 13.1e Rcrcr lu Figure 13. 17. The maglletic fittlri ill r::hanged from 5 x 10 ~ In 10· J Wblm 1, All other parameters remain unchanged. Find the following: (see Their
J
liliAn 01H .
".h II, l~Dre
(0) tbe position of the electron 1I1lhe exilltide of tho magnet ic·field fegion (h) tho exit anNie (the lingle between tho truitlctury lind tho K axis after the elecl ron hA~ ed through tilt: magnetic field) t3. tO Consider an electron having initial kinetic onorgy III. ~2 IIml enlering B region uf uniform magnetic field. as uelJicted in Figure P13.16. This ~ilulttiC)n il> similar to that SIIUWII in Figure 13 .17, except thot tlJtl!:!leclron In Ihe prescnt COstl is inclinmi AI an a anglc with n:specl to Ihe x axis. (a) Shnw Ihal v. and v, of tbe electron after il enters the UUI,I(nelir: field are given
t I AS
by
v, of cach int&-
'01>
.roxi·
V.
v. -
cosj"',r , uj v,sin(\o.'
wheT!:! 101< - Cl,.B./m~ And I - 0 corrcsporuJ:! to the mnmenllhe electron !:!lItel'lllhA magnetic field (b) Fint.1lhe cooroinares x and zofthc !:!1t!Clron i!.llime t NOle that x _ 0 and z _ 0 al ,- 0
(e) Finn Ihe poinl where Ihe electron Ip.awt' Ihe magnetic field. Alisump. v, ... 2 x 10" mis, a _ ao. "', - 8.77 )( 10" rad/s. and d _ " cm (d) Find the ongle beh-\cen the x axis and the Iraj ....'Clory uf the e l ~lron after il hall left the mAgnplic field . Sketch 1111:: entire Iri!.j9CIOry, and compare il with the one shown in Fi)!ure 13. 17.
, J----j ------,
.l::lecrron
..,,,
• • • • , , •" • • ,
Figur. P13.1'
,,
t
)
• • • ~--~ • • I x
)(
K
K
X
1<
I
--------'
no. :tt Ii clic 0 ..
t3. t7 'I\\-,., flarallel wires arc carrying 100 A of current in 0pPQ:!lte diroclions. On each wire £ind Ihe force pAr unit length due tu the mllgnetlc field produced by the other wire. Is the force repulsive or attractho-e? Assume that thf!linf!S IITf! 1.5 m apart.
13
426
Mll8nelollltic: Fifle.
13.18 " wo idtmticul circular loops of radii n ATflllepartltoo by a distance d, where d «(l. Qne of tho coils carries I amperes current clockwise. and the other carriM I amperes coun terclockwise. Find the fort:e betW8fln Ihft8f! coils. Hint: Becaux these coils IlrC close togethor. you can appmxlmate lhe magnetic field that Is ODe coil and is produced by the current 011 the othor as III .. Izl'f2Trl). the field due to an Inn nileiy lonx win:. Let 0 .. 1 m and d .. 0.05 m. How much current is needed
or
I'
tu produce a force of 9.8 N?
13.1' A circular loop of radius 0.5 m 1:IIld l00 lurns is excited by II 2 A direct curreni. This loop is placed in the Earth's magnetic fiflld, which b IIpproximatcly equal 10 5 )( 10 - ~ WbfmJ pointing nnrth . How do you orient this loop to produce II max;· mum torque? What is the value of this torque? Find thAt oriAnttllion uf the loop in which it t:Xpt!ricnccs no torque. 13.20 'fhc »quare cond ucting loo p AIICD ~hown in FiJ\urc P13.20 cn rries 2 A of direct current. I~ach sine of the iuutJ is 0.1 III long. The loop 15 pillced in II. uniform mag. netic fitlld B. Find the force on each side of IhA lootJ II.nd the torquo on the entim luop if:
(II) H - ~ 0.2 Wblm 2 (bJ B · t 0.2 Wblm 2
, D
C
T
-U.lm
f .. 2 A
•
-.
Flguf. P13.
2.
8
13.21 An Infinitely lung conductor of radius n cllrries Figure P13 .21 .
II.
uiroclion current I as shown in
(A) Finel the H field in the region 0
Itatic f'jelds
111M d « o. ler curies I ~t: Because halls alone field due to It is nettd9d
}Ct current.
lly cqutll to lell II maxithe loop in
Problem.
427
'i I
t
y
,
T
"
1m
I"
!-- -1m-...j
" of direct form magthe culil'9
"
,
Figur. P13.22
FlgvrePt3.2t
13.23 The mo.gnt:tic field in a cOIlxiallille is giVfln by
1'. - fOllP ~
forO.lm
< O.2 m elsewhere
Tho mcdium i8 Air. What is the totiil stored magnotic ellcrMY pltr unit length ill the line" Give tho numerical value and indictlte its unll .
hownin
13.24 (a) CHku lale lhe stored U1tlgnelir: energy per uuille nglh of Ihe parallel·plate mnductors shown in Figure 13.5. (hJ If the parallcl plate is u~ed as a capacitur to IIlore elect ric CllerNY, finrlthe volt· axe Vo for which the stored electric energy is cqutll to thfl ilored magnetic en· ergy found ill (a). Let , - l A, W _ 10 cm, And (] - 1 c m. ExpteSll Vo in volts. The medium is air. 13.25 CalculAlfi the inductance pllr unillfl ngth of the coaxia l line shown in Figure 13.3a.
<no he mag:tion,
0.5
e duelO Jalue of
13.21 Calcuillte the inductance per unit length of the parallel·plate conductors shown in Figure 13.S.
CoS'('
.t,
1)+(6/2)\
•
·r 'f.--+-~
,
" Fo..- 11/" d/~;
IJ.!
:.
~}lz -
ii·(-'):r~.
~1j
1~/f"-h
d
30
F.r I~/'''-;'; 2/-1. = 2 (¥Z)7,p 1-1,,-1("-1,)
... H_{(:')I(d/.) , ~''';' xU"!.), ".~ LIse .!/,.4A..J;Ol'l. (/3.!J())
_
fa 1- o. ,UIO-
f
•
,.;iH..-} .... '
A..ra.2
2( .'
-
~r
<#Ii...
$"" k,.o.
.,.$./C'," Co
... I · o.'UID )rt -I-II JI 4/,u. <:
(7W) c~l'Te ..t ."doJcJ.) r ,bJ a..ff$b; j - "'bt::4.1J ""'Ii J.lTI'H,E'j·"(f7-a!) 9
p'p; .nfllf-I ...
(C)
P-i';f .
hlf
c..J.t I
:::rr~f---_A
,
" ,
,
/3.1
\
'-
/
fl4j Hzo
(a.)
/'
~~,
J
~4
--
t·c
"
, ~\,Cc.seZ I
1..
-.-,
I
( 4)
49
A
ll-;
' .'11110 rt~1i l(
(.
.,rJ< ,,,_Op
~1t./O
I ,,:t:.a.:I ~n;a' bi_iA..' ,/ 4,(f!},
,
I.SIt!1>
9
J
~
I~1fI(F
..
d.JI"," +rr~
(4)
-
I"~;.(-'H""-S;"" ... 9J "'l..J#>{I-~.)iJ -
- f. - n,r dl (.) H~. d.~ - * "'#f). (.x:.I+C I·,.)1JJfl.&. A
A
Z
X.
a
E>
Z H
rJ{ 'x! ).J4 I
a. uHS·" ':
,
( " ', ............ ) 41- .r..s...\t. ....
~
H.~"'iJ;,- a.lSl-ii-
( N:~ H,/, .•• .f )
H: Jl1
.
H~. ~tL' [(a·"(I-~lJ-~+(a.'+(I.tlJ-~J
·k::J.·(I+". t.~;-J{
c
(~"/~S)
H'I
!
I
••
-kfcU'(£-AS)'r41a. [J-t<.f."dsly'4j •
I
••
-~ ([I"I : -'.~fTI; .. [1'll.AS)')""'; c.
]1.
::"-'1'-.-,_ •••,
.,'-/#>l
ai i_O; ct ~·i..1
f.
"
.. -1'12)}..(I">'/,,)'] =.1.. D., . . ).,..!.I J c. ().D7 .",. (~/().:/r O.()7;e . . 2._ r ().'Z7Cl. I
"-
r I (f,Iott,. I -"34:" ' (,+(i'/G.),-]¥.i - H, . l,.,t~~)J,{J.
I'! .,"4+t". . (IJ.20>, III - .2(a..i"rl)'1& ar i . 2., HI./N;""t.,,_ [1+(J./t1iJ-o/J.o.,
t;uperp.,"·liM
,
••
: ,,' '~
i •
Fr,,""
/3 . ID
',':
---.........-
H,;.. Z
•
x.4Ll
r " i:;:;rz: (''''r)
te) ~ t. b s,-_Iry J H, ~ ii.t. (4)
r
A
CAS.(..t_ -
4 •
A
Z " (&iH1-1.'fjJJi
••
.,••
1.(~!ISS) I(I·(~-o.(tylh+[I.(.:c+~'l J- ¥J1
-" ZJ" [(I'*(l!-o.S-lrJ;, .... [I.t{: ....s1f'nJ .o.t'/ :./t,.> .. (I'fc:z.- o .n 1r'Jt+[I+c .. r rr .... -1.2'S-D ,'""'Cf" z.~ ::;. x.-::-:t o.,,,~ (r_,_ of ~.;$ ~.,. ~ p"'~'.M. p""''-') I..'JI
-.'
.... 3 () . J.
"
~.
+O-
-
13.11
lo.)
I
,
,I"
-
,I" /I •
•
r,... .=.-.. of" , 6>-x) '
l~-"'; ( )'. 1>.... ,.
50
J'"
J
('tI.~ tl.f)
.6J = f's
fl./2.
I
r., =(-rf
.;;: = fw (-il;
+ IjJ/JrV
.
Iii ~ ~1lr = J', c,#'rJI",I-fJ ~
" 1',"''''f d vc-lI x[-ff+HJ
=
dH
4711 f' + J ') ".
-fslJpJ'r'~
r,a: 18
/2.13
~.Ti.
.. ""...,
• ,4./0"'"'0''' ~~,,~,.II.I.·)I
&
2.B "'HI
!!1!
PS/Il, ~ (hlr/""',)JS.. (,JS'/,,8)'i I!.;/ K, • (1I¥/1If.,Y.. (Uf./ue)5Sc •
~
R.
,.,V;
• IS. loS-.
(4'
V;
,,".1 •. 2.. ,," I, (,~JO··'. '1/.
I,.·j
•
= O. Q9J7
~s" "l9.17_ R.,.. 9.• 14..,
....
f),q'fS'....
C.I/~ ~
t.I.s~C.; IfJ • - V, S·;., .... t J
..
wJ...,,.
W.
..
Vi/Ro
... V.
or
I
,
:. ,: _jt\l"rt't • ~S~'""'/tJ!i~tw," • fN ...,
....
_l'v:,Jt • ...!!! , "" ,.,..,t I~ • ~ ("'Jl.fl!-/) Ai: ~ ~j,t;; :ttt.) .. ~.()# = -t!s,.;.....,f;• .. ~t•• 't _ D. Jr J.li.) • ..:e iii· a..", - 0 .. IU ( 1-(#.1$)* -I) - - (1. "D7.2,." J
-t .. i ....1/. $i",wl."
tL~ ~c. .... is.t,,
(. )
.. )= v. CASwI. c v. f ,-s.·. ·fJ't.
.. 11; ,rl-_(~'-.'-rjl~
~u
'itl.)--V;SI:"""~.
f).'S'"
w
(). 9.J7
Y;
-=-I,ls"'O
.... ~,,",,-'("j (4)/",(4>] & +--'(-", "V.. 9J7) • - 'o.S" , Lt ""', m45"";"'c.. /It.U. r ..
:.
'""'j"'/'" tor.
•
/.0c,t,l
~,.)+ ~I(,I)~
l.tJ '.).c:'-~f/~
t.~,c. ~(,,)c V; uSoI.- J
(.) I,. tilt..
,i."",
1$
v.l. .. 'V",.tI>-v.'AS("4t+6) ~ "JW-\$f'~("'lt~f
-v. le)c ' " ~J{~t40 fII.)
"~j;DI\ ~ :t'(4)-;: tI;,(t)Jt'
)'l<6)- ~s.;,.(44tt")4C,
AIttL
•
v.;;
Ju:)--i/t
..,..£
'Ii ((): .. V. S';"("4:tt,.( )
~
1.•
JftJ- 4 "5 ct)"t:
~sc~t4>"')+'l.
•
c,=--..J:,;,...{
%l~).J(").oJ ~ C".-~c..os.t.. :~ 'l'(.e): ~[s.... (~t+,L)-I,:..J. J ..,w(. 'k).*[GOJl~t"''''J- '.ht.J (C) J. TJ.• • "';I~~ -i r~. %l.,.)_ tL -;r[''''(IoJ,,~.''''')-S~''J . • silt (1J,t,,+.t ) . ~" + j,~ . . -= 1."";;~:;f=If"'·' .,.s;,..U·). O~Z,ZI, r;'""
.. ,
Wi"
:. h's
(c.r.l.:~. +.(,)
:. at
-Mc ~,'Ii~
.y
1_ s;.",.'(1IJc4+tJ.)
xt,.)- t>.c4-,.,
ll.> Itt /1" 4.J(" J~~ ~.... ) . clli si .,.,It.
""
~ '" I. (~.1,,{,)t .. 4..IttI.
D• •
,r
"{4>~"/_" ,(".,s--u,(s..,J , ' .'7./0
COJ(...,i-.+.-4) - ''.II'S'V''. ~
8. ~"" al (Vj(to/~t4.)J • ~
1)(01.). -
-D.DC'7li/o",
".2''-' 'Jr.
·'r-1>.1Itl'l,.,,~) _ .. IS.U· 51
-
~ I,
-/J. 11
/4I.l.
~
7,
#
~ITZ
"*,~
i.
W-~'"
oS
.5 "
!
T..... )<-msc
,
£.0, sl..tl/t/...
'I.. pt..(ui..
IIui,"wi.r ,,",-..H.c. £_11'1/
E
-;IlL.
:
~,. ..,f,"O"
0'-
+0 oh-!aJ",.
.,.,., .... .
~i-""
"(".SJ1."'IDOK.%M5'KIO· r c: f.SS'X/D- J
A.,.i.J""'IwJ(~
"'-m
NO ..J.rfu~ ~~/."'i~«J ...,;.'" b.p ;1 piNeL VW,'c...J/!j l~ Hoc N- S d.·,.~t.h·O'"
/3 .'0
Fltu=-O,
(ct)
Fa,,=
,t,illfij. '/1I0 ./A.j·X ~. l; rrf.#41- ~
i-i) ,. F~.
~P... = 0· ·'''1.)(1); T=(o. /)I.If'2jx , .,.;:: ""1110"" l~ )
0 . /62.
-X
X (.
•. Olf "';;
1l2..!
/J. n
(A •
'~r fi+
)=
T:
0 .
= r.r-:f.!) ....
II'
lJ.· JJJ t .... H ;
I' I
UH ~
/l, =
O. '2;
iLl" • • /0'" "Y
4v
a
L=
If
1-1+ '"
1.1f"''"
II.
LlI.
-:
I'
1
Y.
0
J/.,.. (.,"')
;'ro<1' (
...
Alr ,'" ".~... 1..,J.,f." t' (1'11.1) = "1f I
11:
1
"
Jf
~\.
II"
.A. ;Ir. -
.,,,.-1
l
H/~
fi
~r{t
-." y' ) F, = /.;,,[ /~;' (i;y+y)]: ':;"(f_1;J:,o-rrf_J:J tJ~: -t ... t;( trur (-if / = "M..I.. = 1.7~'" -I J/,.,
;; -
"',-
,.~
t
•
L
52
/.1/
/3. ,"
53
452
14
Mil3uellc M. leriaJ. and Masnetic Circuit,
From 8'01, we find the correspondin)! I-t0) (Figure 14.1 7b): /l ilt _
2~OO
Ai m
The iterative method calls for substituting the above value Inll) (14.23) to obtain the "first-order ' approximation of B, which IS denoted lUi BI": /1111_ 11000 - 24(0)( 0 1211.u.. _ 0.176 Wblm1 0.005
The corresponding I Jl I' mllY be read fmm Fi"ure 14 . 17h; H I' I _ 2100 Ai m
WA ubta in the "second-order" approximation of B by substitutin8 the above H " va lue for H in (14.23):
=_2~'~OOo::;x~O~.~12~I~"' '' - O.167Wu ' / III• B'" _ cll~OOO 0.005
This procedure (".an IJe repealed to find the n _th itljl'lltivc result of B I~I. When a rli8illli computer is available, the mlignc ti7.
be written 10 cllrry out thA iti!rativc proc:eduft!. which rACluirt!9 very lillie computer time l!lei! Problem 14.71. Tht! problem ill hand can also 00 9011U!. by a gmphicaJ method. Nutc that l14.221 or. equivalently, {14.23} is an equtttion of II AlraiMh! line on tht! B-H plane. As shown in Figure 14.17b this lint! intersects tht! B oxls al 0.251 Wblm1 and tht! H axis at R264 Aim. II 81110 intersecls thlt nonlinea r magnetizotion corve lit B _ 0.19 Wb/m1 • This Ttlsuit a)!rees fairly \\..,11 with the result obtained by tht! iterative methtxl.
Problems 14.1 RefAr to the magnetization CUrvA shown in "'igure 14.3. The malt!riol is a nnnlint!8r nH:dium bec-.8wt: J' depends 011 the magnitude of If. For mognelostalic fidds. u is equal 10 the slope of the line ing the ori!jill to lhe tHo BI poin t on the mllKlletizaHon curve. In this WilY, Figure 14.3b is obtolned frum Figure 14.30. Now. if the matltrial is placed in Ii time-harmonic field . thA Afft!ctive J' will btl different from thA Il for the magnetostatic fi e lds. Consider a field H - 110 + H, cos (101' + t/lJ. where H. is the nias magnelolltatic field and H, is tho amplitude of the timt!-hormonle eompont!llt of the lotal field. Lei H, « 1I. ; IhAn the cffecllve Vt:rmcobility of a malt!riol is thA slope of the tanKtmt of thA ffittMncUzatlon t; urvc at f-I •. Skt!teh the effective I' Vt!I'SUS H. for the curve !lhuwn In Figure 14 .3a. Compare it with the magnlltoslatic JJ "hown io FigurA 14.3b. and IIhow that the JJ's in these two Cl:ISt:S are t!Qualto eilch other al " ,. 14.2 Point out the differt!nccs between the foliowillK pairs of IArms: (o) diamagnetic paromagnAtic,(bl remanen(;e vs retenlivity. and leI cDflrdvc force vs. cUllrdvily.
\IS.
14.3 What ore approximate valuAS of the retentivity and thA (;UIlrcivity of Iht! ferrite shown in Fiwure 14.91
ic Circuita
Problems
453
14.4 Consider Iht! r.arbon steel. alnico V. ond cunico malerials listed in Table 14.2. Which has the highest IJf:!nnanen l magnellc.Reld strength? Which has Ihe most difficu lty in losing its permanent magnetism once it i~ magnetlzed '~ ohtain the
14.5 A permanent ma~net of fUJIUS 1.5 cm and thickness 0 3 cm is put in It magnetic fie ld Ihal is parallel tn the disk. as in the siluatioll depicted in Figure 14 .7. The torque on Ihe disk is cquallu 1.2 )( 10 ' N m. and the magnetic field is equal 10 10- 1 Whim'
Whal is the remanence orthe permanent magnet? 14.8 To writc "onc" in the memory corf! X' YJ shown In Figure 14..11, how should the
current pulM'.'I he sen t along the wires? S~ify the pola rity of these puLses. 14. 7 Consider the magnetic·core melllory sketchflnln I"'gure 14.11 and the corresponding hysteresis curve for the cores shown in FiHurc 101.9. Now suppose that. because of
,hove H ilt
malfunt:liun in the CiN':lIitry, a positive pulse of amplitude I, which alone is capable of producing the switchinH ml:lHlletic fielri strAn8th HI' is scnt down the line YI lind Ihlll slmulianRolIs\y an identical pulse is scnt down lhaline x •. Assume that all cores arc initially ill thtl 'zero~ sta tR, which corresponds to havinK the magnelir. flux cir· culation point ing either tOWtlro thtl uppflr Iflh or the lower left (usinH Ihtl risht. hUlld fule). What afe the states of aU of thu l.:ures after Ihlts", pu ls8S have ed through?
, a di~itul standard ~ram may :::omputer
14.8 Compare tbe hysteresis lonp.~ of two ferritcs shown III Fiijufe P H .6. The curve labeled til is "thinner" than lilul lullelecl 1/2. Which fcrrite core requires leM switchin,ll current? Which ferrite has a better ability 1o Withstand magnetic Interier· pnccs'l
hat (14.22) As shown H axis at g Wb/m 1 • n
14.$ Consider the lOal!Cnetic r:irr:uil shown in Figure PH.g. The material is steel. and Figure 14.1 7 shows its magnetization curve. The flux density in the air gap is 0.5 Wb/m'. Find the curren t ' needed 10 produce this flux . 14,10 The magnetic circuil shown in FiHure P14.10 i~ made of a materia l with Jl Find the flux dellIllues HI and B:. and indicate thdr directlOn~.
-
600,"".
•
on linear ~lds. JJ. is on the . Now. if enl from I. where .. rmonlc lity of 1:1 -etch the .... itb the ases are letic vs. vily. !
ferrite
"'
"'
lOOOr\1rns
J. f O.S cm
>
fI
r. P1 • •• "1." ferril
Hy~teresilloope
ror two
~
P,
r,,
100lums
.. ------
T i Dii ,
P,
/'
I
I
0,
I
...I ___ ='.l'
r.
p.
B,
Ipngth~.
P,P,-lIcm P, P, - PIP, _ 10 em
P,",", - Ucm
/',/',-9cm
cross' N!CtioMlllrella: ":/'. - 12 em'
all other branches _ 9 em'
454
14
Magnetic Mllterillis and Magnetic Circuit,
12cm
14.1 t To produce a magnetic flux of 0.5 Wh/ m1 in I h~ air gap of Ihf! ma)(nt:licci rcuit sho..... n in 1-"gIlfA PI4.11 . what s hOllln be lhtl mag nitude of the current in the coil? Take.u • 200.uo. The cross-seclionaillrt:a of all brandlfls is t:!(juollo 4 emt, 14. 12 Write II cornpuh:r program 10 f'.H rry uut the Iteralinn proceuufc outlined in Example 14.5. First. approximate lin: nonlinear CUr\lft in Fi)!uro H .17b by a polynomial of fiflh order. Than carry out the Iteration five timos to obtAin the rourth-order approximatiull for B.
14. 13 Find the approximate value of Ii in tin: magnetic r:ircuit ~hown in Figure 14.178 for excitatiUIl currenl J _ 15 A instead of 10 A. All othor conditions givtlll remain unchanged. Ca rry out the iteration a liufrident number of timt:1I 10 obtain an ar.cu· racy to thfllhiro digit.
15.
QU;
CIIAPTEI< 14.
-------::,;---... o SL
o
f d.:_~,,,I''c. : ,rt..,,, •.uc t..J«s. co"pl,,/,'; .
~
p~uL 61 or/H'/_t ~4. .p/,.",'"S ..Ie r.~, clMcd J
1'4.r~"J..·c : "'A9"e.~iC .,o-'J~ . e ~w..( C#.,pl"d"
-h .l.Cc.. o,..j,".J.&/...,,4.
&";It"'~ ~/"cA-ro ... b
~.~ ca,.,d
rc_et'lc£: MJ.e,.. H· I:> I -He. -~,.:ItuIe, "'.-fe. "4!':~ l3 ~ C4.JLuL 1Y1tIAII..,.,&. [ rc/~ ·fivi'l-y: .,.,,~ Tt,...,.".,CIVC /$ ;s wlu/. ~;u..J...",,-Iy MIA..,.. boN. ent4 -M .. I'U.J,.~:t'J.J,.o,. Curl/I! (V~
COerG/Ilc.. /Drce: {
Ae
"I
s~1"o"",
Tl-c. .-Lue 0,1 /I i" ~c. ".,t'.,e dircc.Jjt>tt .10 hwe.fy +lie. 6 1),.£:1. .
C'oe.rc;vjt,; -M~ toc.r,;"e. '+O/·'U. H I~ C#JcJ.. ccerc.i..,,'1-y iNAe" m"-'jJtehJ.-I,,,,.. (!.'W-v,e. ~L ~ S4nu-4.n'." .
1+.3
r~ju.J.;II;tr - 0,22. w~/I"'Ia. i eOCrciv/+y. 100 014/....,
14 .4
AA.9AL:.e pC"'''''(VJl"nt ",,,,"c./-" I,'~ 6J,.c"fHo.. MAlc"".t;~ tt.l..nico V 'h/)J~ at.;/f.Ut..ti. +0 .t.IL perft'll}J."'6'1t "'-:'J,.c.lis," I"'IAlp,A/. i& (;u.nic"
•
I+. '!
T=I.Z)(/o·l a""", "",)(10·' . . m-/.2,
1 m_Nrc."a ) ... HIHI
"'I/IL - . J'."'~ 3",/0.j -
~."
41'1'>110''')1. ~."7I.ID r:;
0."7/
u "I ,.,.
.-- B ""iloH •
.J
".::1 - 11"(;::'$)'-'&''17. ~~
z:
K
10 ~
Wj4"
14.'
¥. ,J
X,
ill
~
""0" J4f,: m~"r."" ,/HD""~lft p.'''''':''J ./PIo,Ittrd... CiJIo'r u~r ·~'/e .,. 4,.,.". _ L../t dt',.,I-1'o ..
... x,Ya-, ,X.Y, .. /
j
}(,Y,-/; x"y.ao;
Yo ==#==~==!!;
}(,,>t-o; X... Y,_I f,y.. _,;
~Yf,e)
111-.8
#/ nlu.irc • .Lt.~. sw;-IJ,,'''J ~"H".I'I~ .
#z. """-s
A.
bcHc~ UI'Iily ¥o lIIi-H.slw.Nl
~, ' rl"'p'" FiS"" I.... I,.,~
"''''*''eW(,
1\- J~_o AI,..,
~iNw 8 .. ,. D. ~ W6/~a ~ JODe r._
IT.... ,;,"'. PI+.f,
k1.Ju-/'cr.,., •• , I~ -I4c.
./nt.
(B I~ -.;~
...
B,~ slid,'
~.1t(5X/t;J) + H, 11'(~""'/o-'- SKID-') I
9·$-SIl./0·'
.Z'Url'M.I.·I_~rllti) - ~JJ3.4--
4'''/0-'
.'. I= 4Z33.4/1_ ~ 4.23 A
•, ~
II
I ''''j
=?) H'~"' I~"
~
,
-'. 8,.:!'-I-I, ... 1+.11
/.O()pI t 5rlIDO_ H.".o.2e.,.H,XAI ••• - . - - _ .... -. (1) DIl i. f'll: 0 -J.l,~'.Z'-liJat).l . . H,.Z.'II, ____ .@
tP# •
,"".U.
5 Do-(,.28"'4.4'7.,..D,'.6·")"'1 qHI.-!"Si -33/
.,u·j,eJt1A
H,.~.t.HI..
'DOlC47frlul"" 86A~"
r,,~(a.ir!J~,
a-o.. -
~ ~ ~ • ,uJ4ll('XJo~). ,uH,'rl( IS¥l.I.-4)"'JAN~ /IC ('IC ID"') ... 1'(,- 4-H,*H,-(T/U".,)H, -4.·H7H,- .. ~ .I."~ ® 4.,.( (]) I.",