Non-Linear Hyperbolic Model & Parameter Selection Short Course on Computational Geotechnics + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder
Contents Introduction Stiffness Modulus Triaxial Data Plasticity HS-Cap-Model Simulation of Oedometer and Triaxial Tests on Loose and Dense Sands Summary Computational Geotechnics
Non-Linear Hyperbolic Model & Parameter Selection
Introduction Hardening Soils Most soils behave in a nonlinear behavior soon after application of shear stress. Elastic-plastic hardening is a common technique, also used in PLAXIS.
Usage of the Soft Soil model with creep Creep is usually of greater significance in soft soils.
qf Rf qa
E ur 3E 50 Hyperbolic stress strain response curve of Hardening Soil model Computational Geotechnics
Non-Linear Hyperbolic Model & Parameter Selection
Stiffness Modulus Elastic unloading and reloading (Ohde, 1939) We use the two elastic parameters ur and Eur ' m c cot 3 E urref ref c cot p
Gur
pref 100kPa
1 E ur 2(1 )
Initial (primary) loading m
' ref 3 c cot E 50 E 50 ref p c cot
'3 sin c cos m E ref p sin c cos ref 50
Definition of E50 in a standard drained triaxial experiment
Computational Geotechnics
Non-Linear Hyperbolic Model & Parameter Selection
Stiffness Modulus Oedometer tests
Definition of the normalized oedometric stiffness
Values for m from oedometer test versus initial porosity n 0 ref Normalized oedometer modulusE oed versus initial porosity n 0
Computational Geotechnics
Non-Linear Hyperbolic Model & Parameter Selection
Stiffness Modulus Normalized oedometric stiffness for various soil classed (von Soos, 1991)
Computational Geotechnics
Non-Linear Hyperbolic Model & Parameter Selection
Stiffness Modulus
Values for m obtained from triaxial test versus initial porosity n0 Normalized triaxial modulus E 50ref versus initial porosity n0
Computational Geotechnics
Non-Linear Hyperbolic Model & Parameter Selection
Stiffness Modulus Summary of data for sand: Vermeer & Schanz (1997)
ref E oed E oed
ref E 50 E 50
'y p ref
'x p ref
Comparison of normalized stiffness moduli from oedometer and Triaxial test
Engineering practice: mostly data on Eoed ref ref E E Test data: oed 50
Computational Geotechnics
Non-Linear Hyperbolic Model & Parameter Selection
Triaxial Data on p 21p 21
qa q E 50 qa q
m ' sin c cos ref 3 E 50 E 50 ref p sin c cos
Equi-g lines (Tatsuoka, 1972) for dense Toyoura Sand
qa
qf M( p c cot )R1 f Rf
M
6sin 3 sin
Yield and failure surfaces for the Hardening Soil model
Computational Geotechnics
Non-Linear Hyperbolic Model & Parameter Selection
Plasticity Yield and hardening functions
p 1p 2p 3p 21p 21 21e
qa q 2q E 50 qa q E ur
qa q 2q f p 0 E 50 qa q E ur
3D extension In order to extent the model to general 3D states in of stress, we use a modified expression for q in of q˜ and the mobilized angle of internal friction m
q˜ 1' ( 1) '2 '3 3 sin m where 3 sin m
Computational Geotechnics
f q˜ M ˜ ( p c cot )
˜ 6sin m M 3 sin m
Non-Linear Hyperbolic Model & Parameter Selection
Plasticity Plastic potential and flow rule q 1' ( 1) '2 '3
with
3 sin m 3 sin m
g q M ( p c cotm )
M
6sin m 3 sin m
p 1 12 12 sin 12 12 sin p g g p 1 1 2 12 13 12 2 2 sin 13 0 12 13 1 1 p 0 2 2 sin 3
Computational Geotechnics
Non-Linear Hyperbolic Model & Parameter Selection
Plasticity Flow rule p v p
p v
p
sin m sin
with
sin m
sin m sin cv 1 sin m sin cv
cv p p
Primary soil parameters and standard PLAXIS settings
C [kPa] 0 Eur = 3 E50
Computational Geotechnics
’ [o]
[o]
30-40 Vur = 0.2
0-10 Rf = 0.9
E50 [Mpa] 40 m = 0.5
Pref = 100 kPa
Non-Linear Hyperbolic Model & Parameter Selection
Plasticity Hardening soil response in drained triaxial experiments
Results of drained loading: stress-strain relation (3 = 100 kPa)
Computational Geotechnics
Results of drained loading: axial-volumetric strain relation (3 = 100 kPa)
Non-Linear Hyperbolic Model & Parameter Selection
Plasticity Undrained hardening soil analysis Method A: switch to drained Input:
c ' ; ' ; ' ref E 50 0.2;E 3E ;m 0.5; p ref 100kPa ur ur 50 Method B: switch to undrained Input:
c u ; u; ref E 50 0.2;E 3E ;m 0.5; pref 100kPa ur ur 50 Computational Geotechnics
Non-Linear Hyperbolic Model & Parameter Selection
Plasticity Interesting in case you have data on Cu and not no C’ and ’ m ' ref 3 sin u Cu cos u ref E 50 E 50 ref E 50 const. p sin u Cu cos u m ' sin u Cu cos u ref E ur E urref ref3 E ur const. p sin u Cu cos u
Assume E50 = 0.7 Eu and use graph by Duncan & Buchignani (1976) to estimate Eu Eu 1.4 E50
2c u
Computational Geotechnics
Non-Linear Hyperbolic Model & Parameter Selection
Plasticity Hardening soil response in undrained triaxial tests
Results of undrained triaxial loading: stress-strain relations (3 = 100 kPa)
Computational Geotechnics
Results of undrained triaxial loading: p-q diagram (3 = 100 kPa)
Non-Linear Hyperbolic Model & Parameter Selection
HS-Cap-Model Cap yield surface 2
q˜ 2 2 f c 2 p pc M
Flow rule
gc f c
(Associated flow)
Hardening law For isotropic compression we assume p v
p p 1 p Kc Ks H Computational Geotechnics
with
Kc H Ks Ks Kc
Non-Linear Hyperbolic Model & Parameter Selection
HS-Cap-Model
For isotropic compression we have q = 0 and it follows from p pc g pc H H c 2H c p pc
p v
For the determination of, we have another consistency condition:
f c f c fc pc 0 pc
Computational Geotechnics
T
Non-Linear Hyperbolic Model & Parameter Selection
HS-Cap-Model Additional parameters The extra input parameters are K0 (=1-sin) and Eoed/E50 (=1.0)
The two auxiliary material parameter M and Kc/Ks are determined iteratively from the simulation of an oedometer test. There are no direct input parameters. The should not be too concerned about these parameters.
Computational Geotechnics
Non-Linear Hyperbolic Model & Parameter Selection
HS-Cap-Model Graphical presentation of HS-Cap-Model I: Purely elastic response II: Purely f rictiona l hardening with f III: Material f ailu re according to Mohr-Coulomb IV: Mohr- Coulomb and cap fc V: Combin ed friction al hardening f and cap fc VI: Purely cap hardening with fc VII: Isotropic compression
1
2
3
Yield surfaces of the extended HS model in p-q space (left) and in the deviatoric plane (right) Computational Geotechnics
Non-Linear Hyperbolic Model & Parameter Selection
HS-Cap-Model 1 = 2 = 3
Yield surfaces of the extended HS model in principal stress space
Computational Geotechnics
Non-Linear Hyperbolic Model & Parameter Selection
Simulation of Oedometer and Triaxial Tests on Loose and Dense Sands
Comparison of calculated () and measured triaxial tests on loose Hostun Sand
Comparison of calculated () and measured oedometer tests on loose Hostun Sand Computational Geotechnics
Non-Linear Hyperbolic Model & Parameter Selection
Simulation of Oedometer and Triaxial Tests on Loose and Dense Sands
Comparison of calculated () and measured triaxial tests on dense Hostun Sand
Comparison of calculated () and measured oedometer tests on dense Hostun Sand Computational Geotechnics
Non-Linear Hyperbolic Model & Parameter Selection
Summary Main characteristics •Pressure dependent stiffness •Isotropic shear hardening •Ultimate Mohr-Coulomb failure condition •Non-associated plastic flow •Additional cap hardening
HS-model versus MC-model
c,, As in Mohr-Coulomb model ref E 50 Normalized primary loading stiffness
ur
Unloading / reloading Poisson’s ratio
E urref Normalized unloading / reloading stiffness
m Rf
Computational Geotechnics
Power in stiffness laws Failure ratio Non-Linear Hyperbolic Model & Parameter Selection