CBSE XII Mathematics 2012 Solution (SET 2)
Mathematics General Instructions: (i) (ii)
(iii) (iv)
(v)
All questions are compulsory. The question paper consists of 29 questions divided into three Sections A, B and C. Section A comprises of 10 questions of one mark each. Section B comprises of 12 questions of four marks each and Section C comprises of 7 questions of six marks each. All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question. There is no overall choice. However, internal choice has been provided in 4 questions of four marks each and 2 questions of six marks each. You have to attempt only one of the alternatives in all such questions. Use of calculators is not permitted.
Section B Q11. If a , b , c are three vectors such that a 5, b 12,and c 13,and a b c 0, Find the value of a .b b . c c . a . Ans.
a 5, b 12 and c 13. a, b , c are three vectors such that a b c 0 a b c a b c 0 0 0 a a b c b a b c c a b c 0 a a a b a c b a b b b c c a c b c c 0 2 2 2 2 a a b c a a b b b c c a b c c 0 x x x and x y y x
2 2 2 a b c 2 a b b c c .a 0 2 2 2 5 12 13 2 a b b c c .a 0 25 144 169 2 a b b c c .a 0 338 2 a b b c c .a 0 2 a b b c c .a 338
338 a b b c c .a 169 2 Thus, the value of a b b c c .a is –169.
CBSE XII Mathematics 2012 Solution (SET 2) Q12. Solve the following differential equation: dy 2 x2 2 xy y 2 0 dx Ans.
dy 2 xy y 2 0 dx dy 2 x2 2 xy y 2 dx dy 2 xy y 2 ... i dx 2x2 This is a homogeneous equation of degree 2. On taking y = vx, we obtain dy dv vx ... ii dx dx From equations (ii) and (i), we obtain dv 2 x(vx) (vx) 2 vx ( y vx) dx 2x2 dv 2vx 2 v 2 x 2 vx dx 2x2 dv v2 vx v dx 2 2 dv v x dx 2 dv dx 2 v 2x On integrating both sides, we obtain dv 1 dx v2 2 x 2 x2
1 1 log x C v 2 1 1 log x C y 2 x x 1 log x C y 2
x 1 log x C = 0 y 2 x 1 Thus, log x C = 0 is the required solution. y 2
CBSE XII Mathematics 2012 Solution (SET 2) Q13. How many times must a man toss a fair coin, so that the probability of having at least one head is more than 80%? Ans.
Let p denote the probability that the man gets head. 1 1 1 Thus, p and q 1 . 2 2 2 Let us assume that the man tosses the coin n times. Let X denote the number of times for which the man gets head in n-trails. P X = r n Cr p r q n r
(r 0,1, 2,..., n) n r
r
1 n Cr 2
1 2
1 1 p 2 and q 2
n
1 Cr 2 n
Now, P X 1
80 100
(Given)
P X 1 P X = 2 ... P X n
8 10
P X = 0 P X = 1 P X = 2 ... P X = n P X = 0
Sum of all probabilities is 1
8 10 8 P X = 0 1 10 2 P X = 0 10 1 P X = 0 5 1 P X = 0
0
n 0
1 1 n C0 2 2 n
1 1 C0 2 5 n
n
1 1 1 2 5 n
1 1 2 5
1 5
8 10
CBSE XII Mathematics 2012 Solution (SET 2) n
1 1 It is known that is true only when n ≥ 3. 2 5 Hence, the man must toss the coin at least 3 times.
Q14. If cos x cos y , find y
Ans.
x
dy . dx
The given function is cos x cos y Taking logarithm on both the sides, we obtain y log cos x x log cos y Differentiating both sides, we obtain dy d d d log cos x y log cos x log cos y x x log cos y dx dx dx dx dy 1 d 1 d log cos x y cos x log cos y 1 x cos y dx cos x dx cos y dx dy y x dy log cos x sin x log cos y sin y dx cos x cos y dx dy dy log cos x y tan x log cos y x tan y dx dx dy log cos x x tan y y tan x log cos y dx dy y tan x log cos y dx x tan y log cos x OR y
If sin y = x sin(a + y), prove that Ans.
x
2 dy sin a y dx sin a
Given, sin y x sin a y Differentiating both sides with respect to x, we have
d d sin y x sin a y dx dx dy d d cos y sin a y x x sin a y dx dx dx dy dy cos y sin a y 1 x cos a y dx dx dy cos y x cos a y sin a y ... 1 dx
CBSE XII Mathematics 2012 Solution (SET 2) sin y x sin a y
sin y … (2) sin a y From (1) and (2), we have dy sin y cos a y sin a y cos y dx sin a y dy sin a y cos y sin y cos a y sin 2 a y dx dy sin a y y sin 2 a y dx dy sin a sin 2 a y dx 2 dy sin a y dx sin a x
x2 Q15. Let A = R – {3}and B = R – {1}. Consider the function f : A B defined by f x . x 3 Show that is one-one and onto and hence find f–1. Ans.
Given, A = R – {3} and B = R – {1}. f : A B is a function defined by f x
Let x1 , x2 A . Now, f x1 f x2
x1 2 x2 2 x1 3 x2 3
x1 2 x2 3 x1 3 x2 2 x1 x2 2 x2 3x1 6 x1 x2 3x2 2 x1 6 x1 x2 f is one-one. Again, let y be any arbitrary element of B. f x y
x2 y x 3
x2 . x 3
CBSE XII Mathematics 2012 Solution (SET 2) x 2 y x 3 x 2 xy 3 y x xy 2 3 y x 1 y 2 3 y 2 3y , which is a real number for all y 1. 1 y 2 3y 2 3y Also, 3 for any y, because if we take 3 1 y 1 y 2 3y 3 3y x
2 3, which is not possible. x R – {3} for all y R –{1}.
Thus, for all y R – {1} there exists x
2 3y R 3 such that 1 y
2 3y 2 2 3y 2 3y 2 2 y 1 y f x f 2 3y y 2 3 y 3 3 y 1 y 1 y 3
Every element y in B has a pre-image x in A which is given by x
2 3y . 1 y
f is onto. Hence, f is one-one and onto. To find f–1: Let f(x) = y where x R – {3} and y R – {1}. x2 y x 3 2 3y x 1 y 2 3y f 1 y 1 y
f 1 : R 1 R 3 is defined by f 1 x
Q16.
2 3x for all x R – {1}. 1 x
cos x x Prove that tan 1 , x , . 1 sin x 4 2 2 2
CBSE XII Mathematics 2012 Solution (SET 2) Ans. cos x x We have to prove that tan 1 , x , . 2 2 1 sin x 4 2 x x cos 2 sin 2 cos x 1 2 2 tan 1 tan 1 sin x sin 2 x cos 2 x 2sin x cos x 2 2 2 2 x x x x cos sin cos sin cos x 2 2 2 2 1 tan 1 tan 2 x 1 sin x x sin 2 cos 2 x x cos sin cos x 1 2 2 tan 1 tan 1 sin x cos x sin x 2 2 x x cos 2 sin 2 x cos cos x 1 2 tan 1 tan x x 1 sin x cos sin 2 2 x cos 2 x 1 tan cos x 1 2 tan 1 tan 1 sin x 1 tan x 2 x tan tan 1 cos x 1 4 2 tan tan 1 sin x 1 tan tan x 4 2 cos x x 1 tan 1 tan tan 4 2 1 sin x cos x x tan 1 1 sin x 4 2 Hence, the result is proved.
CBSE XII Mathematics 2012 Solution (SET 2) OR 8 3 36 Prove that sin 1 sin 1 cos 1 . 17 5 85
Ans.
8 3 36 We have to prove that sin 1 sin 1 cos 1 . 17 5 85 8 3 Let sin 1 x and sin 1 y 17 5 8 3 sin x and sin y 17 5 cos x 1 sin 2 x 2
8 cos x 1 17 15 cos x 17 Similarly, cos y 1 sin 2 y 2
3 cos y 1 5 4 cos y 5 We know that, cos (x + y) = cos x cos y – sin x sin y 15 4 8 3 cos x y 17 5 17 5 60 24 cos x y 85 36 cos x y 85 36 x y cos 1 85 8 3 36 sin 1 sin 1 cos 1 17 5 85 Hence, the result is proved.
CBSE XII Mathematics 2012 Solution (SET 2) Q17. Find the point on the curve y x3 11x 5 at which the equation of tangent is y = x – 11. Ans.
The equation of the given curve is y x3 11x 5 . Let P x1, y1 be the point on the given curve. Since x1, y1 lies on y x3 11x 5 , y1 x13 11x1 5
… (1)
y x 11x 5 Differentiating both sides with respect to x, we have dy 3x 2 11 dx dy 3x12 11 dx x1 , y1 Given, the line y = x – 11 is tangent to the given curve. Slope of the tangent to the curve at x1 , y1 = Slope of the line y = x – 11 3
dy 1 dx x1 , y1 3x12 11 1 3x12 12 x12 4 x1 2 When x1 = 2, we have
y1 2 11 2 5 9 3
Using 1
When x1 2, we have y 2 11 2 5 19 3
Using 1
So, the points are (2, –9) and (–2, 19). Now, (2, –9) lies on y = x – 11 if –9 = 2 –11 which is true. And, (–2, 19) lies on y = x – 11 if 19 = –2 –11 which is not true. Thus, the required point is (2, –9). OR Using differentials, find the approximated value of
49.5 .
CBSE XII Mathematics 2012 Solution (SET 2) Ans.
Let y f x x For x 49, x x 49.5 x 49.5 49 x 0.5 For x = 49, we have y x 49 7 . Let dx = x = 0.5 Now, y x dy 1 dx 2 x 1 dy dx x 49 2 49
1 dy dx x 49 14 We have dy
dy dx dx
1 0.5 14 1 dy 28 1 y 28 dy
(For x 49)
y dy
49.5 y y 49.5 7
1 28
49.5 7.036 (approximately)
Thus, the approximate value of Q18. Evaluate: sin x sin 2 x sin 3x dx
49.5 is 7.036.
CBSE XII Mathematics 2012 Solution (SET 2) Ans. I sin x sin 2 x sin 3 x dx 1 sin x 2sin 2 x sin 3 x dx 2 1 sin x 2sin 3 x sin 2 x dx 2 1 sin x cos 3 x 2 x cos 3 x 2 x dx 2 1 sin x cos x sin x cos 5 x dx 2 1 2sin x cos x 1 2sin x cos 5 x dx dx 2 2 2 2 1 1 sin 2 x dx 2 cos 5 x sin x dx 4 4 1 cos 2 x 1 sin 5 x x sin 5 x x dx 4 2 4 cos 2 x 1 sin 6 x sin 4 x dx 8 4 cos 2 x 1 cos 6 x cos 4 x C 8 4 6 4 cos 2 x cos 6 x cos 4 x = C 8 24 16 1 2 cos 6 x 3cos 4 x 6 cos 2 x C 48 OR
Evaluate:
2
1 x 1 x dx 2
Ans. I= Let
2
1 x 1 x dx 2
2 A Bx C 2 1 x 1 x 1 x 1 x 2
Multiplying both sides by (1 – x) (1 + x2), we get 2 = A (1 + x2) + (Bx + C) (1– x) 2 = A (1 + x2) + B (x - x2) + C (1– x) 2 = x2 (A – B) + x (B – C) + (A + C) … (1) Comparing the coefficients of x2 , x and constant term on both sides of (1), we get 0 =A– B A= B … (2)
CBSE XII Mathematics 2012 Solution (SET 2) 0=B–CB=C … (3) A + C = 2 A + A = 2 2A = 2 A = 1 So, B = A = 1 and C = B = 1 A = 1, B = 1, C = 1 2 1 x 1 2 1 x 1 x 1 x 1 x 2
So, I =
2
1 x 1 x dx 2
x 1 1 dx 2 1 x 1 x 1 x 1 dx dx 1 x 1 x2 log 1 x x dx dx 2 2 1 1 x 1 x2 1 2x dx log 1 x dx 2 2 2 1 x 1 x2 1 log 1 x log 1 x 2 tan 1 x C 2 Hence, 2
1
1 x 1 x dx log 1 x 2 log 1 x 2
2
tan 1 x C
Q19. Using properties of determinants, prove the following: 1 1 1
a
b
3
3
a
b
c a b (b c) (c a) (a b c) c3
Ans. 1
1
1
Let a
b
c .
b3
c3
a3
Applying C1 C1 – C3 and C2 C2 – C3, we have:
CBSE XII Mathematics 2012 Solution (SET 2) 0 ac
0
1
bc
c
a 3 c 3 b3 c 3 c 3 0 ac
0
1
bc
c
a c a 2 ac c 2 b c b 2 bc c 2 0 c a b c 1
a 2 ac c 2
c3
0
1
1
c
b
2
bc c 2
c3
Applying C1 C1 + C2, we have: 0
0
1
c a b c 0
1
c
b
2
a 2 bc ac
b
2
bc c 2
c3
0
0
1
b c c a a b 0
1
c
a b c
b
2
bc c 2
c3
0
0
1
a b b c c a a b c 0
1
c
b
1
Expanding along C1, we have: a b b c c a a b c 1
0
1
1
c
a b b c c a a b c
Hence, the given result is proved.
Q20. If y = 3 cos (log x) + 4 sin(log x), show that 2 dy 2 d y x x y 0 2 dx dx Ans.
y = 3 cos (log x) + 4 sin (log x)
... (1)
2
bc c 2
c3
CBSE XII Mathematics 2012 Solution (SET 2) dy 3sin log x 4 cos log x dx x x dy 3sin log x 4 cos log x dx x dy x 3sin log x 4 cos log x dx d 2 y dy 3cos log x 4sin log x x 2 dx dx x x 2 d y dy 3cos log x 4sin log x x 2 dx dx x x 2 d y dy 3cos log x 4sin log x x 2 dx dx x 2 d y dy x2 2 x 3cos log x 4sin log x dx dx d2y dy x 2 2 x 3cos log x 4sin log x 0 dx dx 2 d y dy y 3cos log x 4sin log x x2 2 x y 0 dx dx
Q21. Find the equation of the line ing through the point (– 1, 3, – 2) and perpendicular to the lines x y z x 2 y 1 z 1 and 1 2 3 3 2 5 Ans.
Let the direction ratios of the required line be
. The equations of the given lines are: x y z ... 1 1 2 3 x 2 y 1 z 1 and ... 2 3 2 5 Direction ratios of line (1) and (2) are <1, 2, 3> and <–3, 2, 5> respectively. Since the required line is perpendicular to line (1) and line (2), 1 a 2 b 3 c 0 a1a2 b1b2 c1c2 0
a 2b 3c 0
... 3
and 3 a 2 b 5 c 0 3a 2b 5c 0 ... 4 Solving (3) and (4), we have
CBSE XII Mathematics 2012 Solution (SET 2) a 2b 3c 0
3a 2b 5c 0 a b c k 10 6 9 5 2 6 a 4k , b 14k , c 8k The direction ratios of the required line are < 4k , –14k , 8k > or < 2, –7, 4>. Equation of line ing through (–1, 3, –2) and having direction ratio’s < 2, –7, 4 > is x 1 y 3 z 2 x x1 y y1 z z1 a b c 2 7 4 x 1 y 3 z 2 Thus, the equation of the required line is . 2 7 4
Q22. Find the particular solution of the following differential equation: dy x 1 2e y 1; y 0 when x = 0 dx Ans.
dy 2e y 1 dx dy dx y 2e 1 x 1
x 1
Integrating both the sides, dx 2e 1 x 1 y e dy dx y 2e x 1 Let 2 – ey = t – ey dy = dt ey dy = –dt dt dx t x 1 – log t = log (x + 1) + c – log (2 – ey) = log (x + 1) + c ........(1) When x = 0, y = 0 Putting y = x = 0 in equation (1), we get c = 0 log (x + 1) + log (2 – ey) = 0 (x + 1) (2 – ey) = 1
dy
y
So, (x + 1) (2 – ey) = 1 is the particular solution of x 1
dy 2e y 1 . dx