f ' ( a ) = lim x→ a
f ( x) − f ( a) x−a
(e ) = e x '
x
c' = 0
(2 ) = 2
x' = 1
( sin x ) ' = cos x
x '
(x ) = n⋅ x n '
n −1
x
⋅ ln 2
( cos x ) ' = − sin x 1 cos 2 x
(x ) = 2⋅ x
( tgx ) ' =
( x ) = 3⋅ x
( ctgx ) ' = −
2 '
3 '
( x) =
2
1
'
n
n ⋅ n x n −1
'
1 f' = − 2 f f
( x ) = 2 ⋅1 x
(f
( x) =
( f ⋅ g)' =
'
1
'
3
3
3 x
(x ) = α ⋅ x α '
2
α −1
1 sin 2 x
+ g) = f ' + g' '
f ' ⋅ g + f ⋅ g'
Consecinte:
'
1 1 =− 2 x x
( log a x ) ' =
1 x ⋅ ln a
( ln x ) ' = 1 x
( lg x ) ' =
1 x ⋅ ln 10
1 log 2 x = x ⋅ ln 2
(a ) = a x '
x
⋅ ln a
Daca avem o functie constanta sau o functie de derivat:
(c ⋅ f )' = c ⋅ f ' (− f )' = − f ' (f
− g) = f ' − g' '
'
f f ' ⋅ g − f ⋅ g' = g2 g